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1.0 INTRODUCTION 

Past research and planning has highlighted the existence of pedestrian injury disparities 

throughout the US and some local agencies have performed cursory analysis in Oregon.  

However, no statewide analysis of pedestrian injuries has been completed to see how these injury 

outcomes differ by race and income.  This report aims to help better understand the factors that 

result in disparate pedestrian injury outcomes for different sociodemographic groups.  It’s 

important to recognize these disparities and understand the underlying conditions that create 

them so that targeted and effective action can be taken.   

1.1 NATIONAL PEDESTRIAN CRASH AND FATALITY DISPARITIES 

BY INCOME AND RACE 

Although income is not recorded in most crash data, numerous studies have found that areas with 

lower incomes and higher poverty rates are associated with increased injury and fatality risk 

(Stoker et al., 2015). A national study utilizing data from the National Highway Traffic Safety 

Administration (NHTSA ) Fatal Accident Reporting System (FARS) from 2008 to 2012 found 

that Census tracts in metropolitan areas with per capita income of less than $21,559 had 

pedestrian fatality rates twice as high as in areas with per capita incomes of greater than $31,356 

(Maciag, 2014). Another study looking at national data from 2008 to 2017 found that pedestrian 

fatality rates in neighborhoods with a median household income between $3,000 to $36,000 were 

more than 2.5 times higher than in neighborhoods with incomes from $79,000 to $250,000 

(Smart Growth America & National Complete Streets Coalition, 2019). 

Black or African American pedestrians and American Indian or Alaska Native pedestrians are 

more likely to be struck and killed while walking, than the overall U.S rate (Smart Growth 

America & National Complete Streets Coalition, 2019). African-Americans and Native 

Americans are disproportionately likely to be pedestrian fatality victims “the U.S. population 

was 12% Black in 2000 and 13% Black in 2010, but 17% of pedestrians killed during 2002–2016 

were Black. Native Americans were also overrepresented: they made up 0.9% of the population 

but 2.3% of pedestrian fatalities” (Schneider, 2020). 

1.2 PATHWAYS TO PEDESTRAIN INJURY DISPARITIES 

National data shows that lower-income and BIPOC households have fewer transportation options 

and are more reliant on walking and transit, modes that put them at greater risk of pedestrian 

crashes. For example, data from the 2017 National Household Transportation Survey shows that 

lower-income households and households with a Black primary household respondent were 

particularly likely to not have a car (FHWA, 2017). In terms of income, 26% of households 

earning under $25,000 do not own a car, compared to 5.2% of those earning $25,000 to $49,999, 

3.1% of those earning $50,000 to $99,999, and 2.3% of those earning $100,000 or more. In terms 

for race, only 6% of white households had zero vehicles, while 23.3% of Black households, 15% 

of American Indian or Alaska Native households, 11.2% of Asian households, and 11.4% of 

Latino/Hispanic households had zero vehicles. Further, people who are low-income, BIPOC, or 
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immigrants are more likely to have non-standard working hours, commuting in the middle of the 

day, later in the evening or at night (Sandt et al., 2016), with the non-daylight travel being a 

particularly dangerous time for pedestrians. A recent study found that people who low income or 

BIPOC are the most likely to walk for at least 10 minutes per day (Buehler et al, 2020). 

Merlin et al. noted that that most studies agree “arterials, multilane streets, and roads with high 

speed limits are all associated with higher risk and more serious injuries (Merlin et al., 2020). A 

national study of pedestrian fatalities found that traffic volumes on non-access -controlled 

principal and minor arterials is strongly associated with increased pedestrian fatalities in urban 

areas (Mansfield et al., 2018).  

Currently, there is limited direct research showing that lower-income and BIPOC individuals are 

disproportionally exposed to higher volume and higher speed arterials – a gap which this 

research seeks to partially address. However, there is evidence that lower-income areas have 

fewer pedestrian facilities to help people navigate traffic threats. For example, a national study 

found that 89% of streets in high-income areas have sidewalks on one or both sides of the street, 

compared to only 59% of streets in middle-income areas, and 49% of streets in low-income areas 

(Gibbs et al., 2012) The study also found that streets in high-income areas are much more likely 

to have marked crosswalks (13% of streets), compared to 8% of streets in middle-income and 7% 

of streets in low-income areas; while 75% of streets in high-income areas have street or sidewalk 

lighting, compared to only 51-54% of those in middle- and low-income areas (Gibbs et al., 

2012). 

1.3 DISPARITIES IN OREGON 

There has been limited studies of pedestrian safety disparities in Oregon; however, those that 

have touched on the topic suggested that similar disparities exist here. One study found that, for 

2008 to 2012, the overall Portland metro area had a pedestrian fatality rate of 5.3 fatalities per 

100,000 residents. For tracts with over 25% of residents living in poverty that number was 12.8 

fatalities per 100,000 people, while for tracts from 15% to 25% in poverty that number was 7.1 

fatalities per 100,000, and for tracts less than 15% in poverty that number was 3.5 fatalities per 

100,000 (Maciag, 2014). A report from Oregon Walks examining pedestrian fatalities in Portland 

from 2017 to 2019 found that Black Portlanders with overrepresented among fatalities, 

accounting for 17% of pedestrian fatalities but only 5.8% of the Portland population (Oregon 

Walks, 2021). 

1.4 RESEARCH GOALS AND OBJECTIVES 

This report seeks to understand pedestrian crash and injury disparities in Oregon using available 

data sources. However, no one data source provides all the necessary information to understand 

the extent of how pedestrian crashes, injuries and fatalities affect different Oregon communities 

and groups, including low-income and BIPOC Oregonians. Therefore, the research pulls from a 

variety of sources including Fatal Accident Reporting System (FARS) data for Oregon, Oregon 

emergency medical service data, sociodemographic data from the Census, built environment and 

traffic exposure data, and data from the Oregon Household Activity Survey (OHAS). 
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Pulling from these sources, the report documents that fatal pedestrian injury rates are higher for 

lower-income and BIPOC Oregonians.  To better understand some of the reasons behind these 

disparate rates, and to understand why areas with more low-income and BIPOC Oregonians 

experience higher rates of pedestrian injury, an analysis of pedestrian fatal and severe injuries is 

summarized using Census tract measures.  This analysis shows that tracts with more low-income 

people and a higher proportion of people of color have a higher rate of pedestrian injury.  

Contributing factors include higher vehicle volumes and more people in those communities using 

public transit or walking to access their work place.  We are not able to directly measure the 

availability of pedestrian safety features, such as sidewalks and crossing improvements, because 

there is no comprehensive database to track the location of these improvements statewide, but 

research from other cities has documented the deficiency of these facilities as a contributing 

factor.    
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2.0 LITERATURE REVIEW 

For a detailed literature review covering factors associated with pedestrian safety, safety 

disparities, and the impacts of inequity in transportation, see the separate Literature Review 

document.  

2.1 ECOLOGICAL PEDESTRIAN CRASH STUDIES REVIEW 

The research team identified 22 studies looking at spatial characteristics of pedestrian crashes 

published between 2000 and 2020, with priority given for studies published between 2010 and 

2020 (earlier studies were included if they were deemed foundational to the topic area based on 

citations from multiple subsequent studies). An overview of key study and model details is 

provided in Table 12 of the separate Literature Review document. Of the 22 studies, seven 

included a focus on some aspect of equity, typically looking at pedestrian crash outcomes and 

differences by income or race/ethnicity, although age was also considered. However, 18 of the 

22 studies included income or race / ethnicity variables in their analysis, allowing for equity-

related findings based on those variables to be considered. A full list of significant variables 

relating to pedestrian crashes is included in Table 13 of the separate Literature Review 

document. 

Select key details of the 22 studies included in the ecological pedestrian crash review are 

included below. 

2.1.1 Zonal vs Network approach 

Pedestrian safety analysis has often focused on roadway characteristics, with disaggregation at 

the intersection and segment level, looking at characteristics that might be associated with 

increased pedestrian crashes, injuries and fatalities. These usually consider roadway volumes, 

speeds (speed limit, 85% percentile speed, percent of vehicles travelling 5 or 10 miles over the 

speed limit, etc.), width (crossing distance, number of lanes, etc.), crossing facilities (presence, 

spacing, type, quality), medians, sidewalks, lighting and other factors. Some consider adjacent 

land use, pedestrian volumes (a proxy for exposure), crash records factors (time of day, weather, 

participants involved), and other factors.  

In order to incorporate equity considerations, including the potential influence of income, race, 

immigration status, age, or other factors, into analyses of pedestrian crash locations, frequency 

and severity, most studies have turned to census data. This allows for the assessment of whether, 

for example, lower-income areas are more likely to experience higher rates of pedestrian injury 

or fatality crashes. The process of connecting the network-based roadway characteristics, crash 

location data, and the zonal census-derived data (often in census tract or block group formats), 

requires the decision of whether to employ zonal or network analyses, or a combination.  
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Although crashes occurring within a zone (e.g. census tract) are not necessarily attributable to 

residents living within the zone, there is strong evidence that most pedestrian crashes occur 

nearby where people live. One study (Haas et al., 2015) found that half of pedestrian injuries 

occur within 1.1 miles from the victim’s home, while another found that half of pedestrian 

injuries occur within 1 mile from home, with 22% occurring in their home census tract, and 

another 22% occurring in a tract bordering their own (Anderson et al., 2012).  For children and 

those over 65 years of age, over half of pedestrian injury crashes occur within half a mile of their 

home (Anderson et al., 2012). 

2.1.2 Analysis zone level 

Most studies used geographic areas as analysis zones, which allowed the overlay of socio-

demographic, land-use and certain transportation related variables over crash locations. Most 

frequently the census tract (CT) was the chosen analysis zone, used by 14 of the 21 studies. Four 

used block groups (BG), one used transportation analysis zone (TAZ), and one used zip code. 

One study included the CT, BG and TAZ to compare the effectiveness of each approach. Six 

studies used the actual crash location and applied either a buffer, or used the nearest intersection 

or segment.  

2.1.3 Modeling approach 

The most common modeling approach was to employ a negative binomial regression, employed 

by 9 of 22 studies, or a Poisson regression, employed by 4 of 22 studies. Other modeling 

approaches included ordinary least squares (2), binary and ordinal logistic regression (2), 

multinomial logistic regression, ordered probit, and path models, and colocation quotient 

analysis. 

2.1.4 Dependent Variables 

Studies were included on the basis of having some pedestrian safety related dependent variable; 

however, how the studies specified the variable, and the inclusion of multiple variables differed 

from study to study.  

Nineteen looked at the number or density of pedestrian involved crashes; ten looked at injury-

specific crashes, often focusing on severe injury; and eight looked at pedestrian fatalities. Eight 

studies looked at multiple levels of crashes (e.g. looking at pedestrian crashes and injuries) - of 

those five constructed separate models for each level, while three studies constructed models that 

examined tiered crash severity. In addition to these pedestrian crash outcomes, a few included 

additional outcome variables, including nighttime pedestrian crashes, pedestrian alcohol 

involved crashes, and walk commute rate. 

2.2 PEDESTRIAN SAFETY AND DISPARITY 

The remainder of this literature review chapter pulls both from the 22 studies included in the 

ecological pedestrian crash safety review and other pedestrian safety studies, with a focus on 

sources of safety disparity. 
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2.2.1 Exposure, activity and pedestrian crashes 

Lower income households are less likely to have a car, which limits their ability to make trips 

and access economic and social opportunity. People living in households at or below the poverty 

level are much more likely to have zero cars in the household (about 25%) (NHTS BRIEF: 

Mobility Challenges for Households in Poverty, 2014). Meanwhile, Black Americans are far less 

likely to own and drive a car (80% compared to 92% of all American households), while 

American Indians, Latinos/Hispanics, Asian, Pacific Islanders and people of mixed race are less 

likely to own cars than white Americans (Lucas, 2012). 

It is also important to note that, for low-income households, cars represent a financial burden, as 

they tend to be older, less reliable, and more likely to need expensive repairs (Blumenberg & 

Manville, 2004). National Household Transportation Survey data from 2017 shows that the cost 

of travel is a financial burden that influences travel modes, with lower-income and BIPOC 

residents feeling higher levels of financials burden, and being more likely to choose to walk or 

take transit to reduce financial burden (NHTS 2017, see Table 4 in the Literature Review for a 

detailed breakout).  

A literature review looking at the relationship between the built environment and walking across 

different socioeconomic contexts (Adkins et al., 2017) lends support to the notion that, for 

underserved communities, walking is less of a choice and more of a necessity. The review noted 

that low-income people walk more than high-income people, on average, in places where the 

built environment is not conducive or supportive of walking. While both groups had higher 

levels of walking in a supportive built environment, advantaged groups increased their walking 

much more than disadvantaged group. This illustrates that, for disadvantaged groups, walking is 

more of a non-choice or captive mode, while for advantaged groups walking is more of a choice 

mode. 

Another review noted that people who are low-income, BIPOC, or immigrants are more likely to 

have non-standard working hours, commuting in the middle of the day, later in the evening or at 

night, rather than at peak commute times (Sandt et al., 2016). Commuting at these times may 

leave them walking to and from transit outside of daylight hours, which is when a 

disproportionate number of pedestrian crashes occur, as well as leaving them relying on transit 

during periods in which transit waits and transfers may take longer and less express service is 

available.  

Of the 22 studies included in the ecological analysis, 4 used the proportion of workers who 

commute by walking or taking transit, and eight studies used the number of transit stops. Of 

studies looking at walking or transit commute rates, one found that walking commute rates was 

associated with increased pedestrian crashes (Abdel-Aty el al 2013), two found that transit 

commute rates were associated with more pedestrian crashes (Abdel-Aty et al 2013; Dai and 

Jaworski 2016). Two others found that combined active commute measures (either transit plus 

biking or transit plus walking) were associated with increased pedestrian crashes (Lin et al 2019; 

Ukkusuri 2012).  
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There is evidence to suggest that higher levels of pedestrian activity, on average, result in more, 

but less severe crashes. However, there are a number of situations wherein further context is 

needed. For example, while Merlin et al, in a literature review, found that pedestrian crashes 

increase with more population and employment density, “the relationship between fatalities and 

density is negative,” suggesting that crashes were less severe (Merlin et al., 2020). Guerra et al, 

in a study of crashes in the Philadelphia region, found different trends in the suburbs than in the 

city.  In the suburbs, higher population densities were generally associated with more pedestrian-

involved collisions, but in the city higher population densities were associated with fewer 

pedestrian-involved collisions (Guerra et al., 2019). Another study found that for block groups, 

population density was negatively associated with pedestrian crashes, while for counties, 

population was positively associated with pedestrian crashes - suggesting that lower density 

areas in higher density counties may be the most dangerous places (Jermprapai & Srinivasan, 

2014). The block group and county level effect were similar for income, suggesting that low 

income areas in higher income counties are most at risk. Seventeen of 22 studies included in the 

ecological analysis used population density, while 8 of 22 used employment density or a 

comparable measure. A number of studies have found that, in general, higher population and 

jobs densities are associated with more vehicle-pedestrian collisions (Loukaitou-Sideris et al., 

2016; Merlin et al., 2020; Wier et al., 2009), and in some analyses have used these measures as 

exposure variables. 

Select key findings from the ecological analysis review related to exposure and activity data are 

shown in Table 2.1.  
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Table 2.1: Literature Review Pedestrian Crash Findings - Exposure and Activity Related 

Variable Summary of significant findings 

No cars in 

household 
 Three studies found higher proportions of household without a car to be 

associated with increased pedestrian crashes (Chimba et al 2014; Cottrill and 

Thakuriah 2010; Lin et al 2019).  

Walking and 

Transit 

Commute 

Rates 

 Of six studies looking at walking or transit commute rates, one found that 

walking commute rates was associated with increased pedestrian crashes (Abdel-

Aty el al 2013), two found that transit commute rates were associated with more 

pedestrian crashes (Abdel-Aty et al 2013; Dai and Jaworski 2016). 

 Two others found that combined active commute measures (either transit plus 

biking or transit plus walking) were associated with increased pedestrian crashes 

(Lin et al 2019; Ukkusuri 2012).  

 Two studies considered the variables but did not include them in their final 

models (Mansfield et al 2018; Wier at al 2009). 

Transit Stops  Three studies found that more transit stops were associated with more pedestrian 

crashes (Dai and Jaworski 2016; Jermprapai and Srinivasan 2014; Ukkusuri 

2012; Yu 2014). 

 One study found that more transit stops were associated with fewer pedestrian 

crashes (Clifton et al 2009) and one found decreased pedestrian crash severity 

(Yu 2015) 

Population 

Density 
 8 studies found population density is associated with more pedestrian crashes 

(Apardian and Smirnov 2020; Chakravarthy et al 2010; Dai and Jaworski 2016; 

Dumbaugh and Li 2010; Lin et al 2019; Loukaitou-Sideris et al 2007; Ukkusuri 

2012; Yu 2014) 

 1 study found population density is negatively associated with pedestrian crashes 

(Jermprapai and Srinivasan 2014) 

 5 studies found population density is associated with a higher number of injury 

or severe injury pedestrian crashes, or increased severity of pedestrian crashes 

(La Scala 2000; Lin et al 2019; Moudon et al 2011; Ukkusuri 2012; Yu 2015) 

 Two studies found that increase population density was associated wither fewer 

fatalities in cities or urban areas (Guerra et al 2019; Mansfield et al 2018), while 

one also found it associated increased pedestrian crashes, injury crashes, and 

fatalities in suburban areas (Guerra et al 2019) 

Employment 

Density 
 Three studies found that higher employment density (or more weekly work trips) 

were associated with more pedestrian crashes (Guerra et al 2019; Jermprapai and 

Srinivasan 2014; Loukaitou-Sideris et al 2007; Wier at al 2009). Mansfield et al 

2018 noted that in particular the employment density of entertainment and food 

services employees was associated with more pedestrian crashes. Two studies 

did not find employment density to be significant (Moudon et al 2011; Yu 2015) 

 

2.2.2 Roadway factors and pedestrian crashes 

Most studies (though not all) have found that increased intersection density is associated with 

more crashes, including pedestrian-involved crashes, although a few studies have found that 

either injury severity is less when crashes occur at intersections (Abdel-Aty et al., 2013; Merlin 
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et al., 2020). For example, one study in Florida found that more road miles and more 

intersections in a block group were associated with more pedestrian crashes (Jermprapai & 

Srinivasan, 2014). Another study in Florida found that block groups with more traffic signals and 

more bus stops per mile were associated with increased pedestrian crash frequency (Lin et al., 

2019). Twelve of 22 studies in the ecological analysis looked at the number, density and/or 

configuration of intersections. Seven specifically focused on roadway density, sometimes in 

combination with the six that focused on classification. Configurations included the number of 3-

way or 4-way intersections, for example. 

Numerous studies have found that higher speeds are directly tied to higher injury severity and 

increased fatality risk for pedestrians (Stoker et al., 2015). Merlin et al. noted that that most 

studies agree “arterials, multilane streets, and roads with high speed limits are all associated with 

higher risk and more serious injuries (Merlin et al., 2020). Six studies in the ecological analysis 

included measures of speed, usually posted speed limits, which were calculated either as an area-

wide average speed, or the number or proportion of roads of varying speed limits.  

Higher traffic volumes are also associated with more pedestrian crashes (Jermprapai & 

Srinivasan, 2014). A national study of pedestrian fatalities found that traffic volumes on non-

access controlled principal and minor arterials is strongly associated with increased pedestrian 

fatalities in urban areas (Mansfield et al., 2018). Multiple studies in urban areas have found 

traffic volume to positively associate with pedestrian injuries (Guerra et al., 2019; Loukaitou-

Sideris et al., 2016; Stoker et al., 2015; Wier et al., 2009). Wier et al found that traffic volume 

was the strongest predictor of pedestrian collisions, while Guerra et al. noted that a doubling of 

AADT corresponded to 25 to 30% more pedestrian crashes and serious injuries. Assessments 

looking at vehicle miles travelled, rather than AADT, have also been found to be positively 

associated with pedestrian crashes (Abdel-Aty et al., 2013; Stoker et al., 2015). Nine of 22 

studies in the ecological analysis include measures of AADT, often area-wide calculations of 

average AADT. Three studies included a measure of the more person-based vehicle miles travel 

(VMT). Five studies looked at the number of lanes. 

Select key findings from the ecological analysis review related to roadway factors are shown in 

Table 2.2.  

https://www.zotero.org/google-docs/?broken=hiniAQ
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Table 2.2: Literature Review Pedestrian Crash Findings – Roadway Factors 

Variable Summary of significant findings 

Arterials 

and Traffic 

Speed 

 Six studies looked at the miles or proportion of arterial roads. Four found that 

higher proportion of arterials (Wier et al 2009), or more miles of arterial roads 

(Abdel Aty et al 2013; Dumbaugh and Li 2010; Guerra et al 2019), were 

associated with more pedestrian crashes. Two others found that higher proportion 

of lower speed or local roads were associated with fewer pedestrian crashes (Lin 

et al 2019; Ukkusuri 2012)  

 Five studies looked at average vehicle speeds, with four finding that higher 

average speeds were associated with more pedestrian crashes (Chimba et al 2014; 

DiMaggio 2015; Guerra et al 2019) C and /or increased injury severity (Guerra et 

al 2019; Yu 2015). One looked at maximum speed limit (Dai and Jaworski 2016) 

and found it to not be significant. 

Traffic 

Volume 
 Of 11 studies looking at traffic volumes, such as VMT or AADT density, seven 

found that higher average traffic volumes levels were associated with more 

pedestrian crashes (Cottrill and Thakuriah 2010; DiMaggio 2015; Guerra et al 

2019; La Scala 2000; Loukaitou-Sideris et al 2007; Mansfield et al 2018; Wier at 

al 2009). Four studies did not find volume to be significant (Dumbaugh and Li 

2010; Kim 2019; Yu 2014;Yu 2015) 

 

2.2.3 Sociodemographic factors and pedestrian crashes 

As noted in the introduction, lower-income and BIPOC pedestrian experience disproportionately 

high rates of traffic injury. Related factors such as poverty status, education level, language, and 

age are also associated with disparate pedestrian safety outcomes. All but two of the 22 studies 

included in the ecological studies review included some socio-economic variables in their 

analysis; with the most frequently used variables being income, age, race/ethnicity, and 

education.  

Geographic analyses are consistent with national numbers indicating disproportionate pedestrian 

injury rates among BIPOC residents, with areas of higher BIPOC populations being associated 

with more pedestrian crashes. For example, a geographic analysis in Florida found that areas 

with a higher proportion of BIPOC residents are associated with significant increases in 

pedestrian crashes (Abdel-Aty et al., 2013). A 2010 study in Chicago found that census tracts 

with higher than average (for the region) proportion of black, Latino/Hispanic or low-income 

residents had nearly 3 times the number of pedestrian crashes (9.66 crash per 10,000 residents 

compared to 3.37), including more hit-and-run type crashes (Cottrill & Thakuriah, 2010). A 

study in Toledo, Ohio found that census tracts with higher proportions of black residents and 

higher total black population were associated with increased pedestrian crashes (Apardian & 

Smirnov, 2020). A study in Philadelphia found that increase in proportion of Black residents in a 

census tract was associated with an increase in pedestrian crashes, though not significant 

connection to injuries and fatalities (Guerra et al., 2019). Nine of the 22 studies in the ecological 

analysis looked at race or ethnicity. Some selected a single minority group based on local 

demographics, for example the proportion of residents who are Black (6 studies), proportion who 
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are Latino/Hispanic (6 studies), or proportion who are Asian (2 studies). Two studies looked at 

overall proportion of BIPOC population.  

Income is strongly correlated with pedestrian crashes and fatalities. Numerous studies have 

found an inverse relationship between socioeconomic status and injury and fatality risk (Stoker 

et al., 2015). A literature review of correlates with pedestrian crashes found five studies looking 

at the connection between income and pedestrian crashes - in each study, higher income levels 

were associated with fewer pedestrian crashes (Jermprapai & Srinivasan, 2014).  For example, in 

a study of pedestrian crashes in Orange County, California, the percentage of residents living in 

low-income households was a strong predictor of pedestrian crashes. The quartile of census 

tracts with the lowest percentage of low-income households, defined as under 185% of poverty 

line, had 11 pedestrian crashes per 100,000 residents compared to 44 per 100,000 residents in the 

quartile with the most low-income households (Chakravarthy et al., 2010). A study in 

Philadelphia found that higher poverty was more associated with pedestrian collisions and 

injuries than with total (i.e. - non-pedestrian) collisions and injuries. That study found that a 1% 

increase in poverty led to 0.22 increase in pedestrian crashes, 0.24 increase in injuries and 0.17 

increase in fatalities (Guerra et al., 2019). Seventeen of the 22 studies in the ecological analysis 

considered either income or proportion of residents below or near poverty level, with 12 

accounting for median income and 8 accounting for the proportion of residents below (or near) 

the poverty level. In one case, the income variable was excluded from the analysis due to 

multicollinearity with another variable.  

People who cannot drive, including children, older adults and people with disabilities are more 

reliant on walking and transit to get around, and are more reliant on high quality facilities to 

navigate safely (Sandt et al., 2016). Young children are overrepresented in traffic deaths, 

representing 21% of road traffic deaths, making it a second leading cause of death for young 

children and a leading cause of childhood disability (Stoker et al., 2015). There is mixed 

evidence on whether areas with older adults result in more pedestrian crashes. However, there is 

considerable evidence that such areas are associated more severe pedestrian crashes; elderly 

individuals are the most overrepresented in traffic deaths (Stoker et al., 2015). Thirteen of the 22 

studies in the ecological analysis considered age, with the most frequently used variables being 

the proportion of residents under or over some age (e.g. under 16 or over 65), while one used 

median age.  

A literature review of correlates with pedestrian crashes found three studies looking at the 

connection between education and pedestrian crashes - in each study, higher education levels 

were associated with fewer pedestrian crashes (Jermprapai & Srinivasan, 2014). Eight of the 22 

studies in the ecological analysis looked at education, typically including the proportion of the 

adult population with a high school diploma. 

Other socioeconomic demographics included among the 22 studies in the ecological analysis 

were 5 studies with proportion who do not speak English (or speak it well), 4 studies with 

proportion of population employed (or unemployed); 4 with proportion of population with a car; 

as well as gender (3), homeownership (2), housing value (2), and household composition in 

terms of single or living alone (2). See Table 2.3 for a summary of literature review findings on 

sociodemographic variables.
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Table 2.3: Literature Review Pedestrian Crash Findings - Sociodemographic 

Variable Summary of significant findings 

Race / Ethnicity  Seven studies found that higher proportion of minorities are associated with more pedestrian crashes 

(Abdel-Aty et al 2013; Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; 

Loukaitou-Sideris et al 2007; Mansfield et al 2018), including 5 finding specific connections between 

higher African-American or Black populations and pedestrian crashes (Apardian and Smirnov 2020; 

Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Mansfield et al 2018), two findings connections 

between higher Latino populations and pedestrian crashes (Chimba et al 2014; Loukaitou-Sideris et al 

2007), and one finding a connection between higher Asian populations and fatal pedestrian crashes 

(Mansfield et al 2018). 

 Conversely, two studies found connections between higher white populations and reduced pedestrian 

crashes (Chimba et al 2014; Yu 2014) 

Income  Six studies found household income to be associated with FEWER pedestrian crashes (Cottrill and 

Thakuriah 2010; Dai and Jaworski 2016; DiMaggio 2015; Jermprapai and Srinivasan 2014; Mansfield et al 

2018).  

 One study found household income to be associated with more pedestrian crashes (Chimba et al 2014). 

 Five studies considered the variable but did not include it in their final models (Abdel-Aty et al 2013; 

Clifton et al 2009; La Scala 2000; Lin et al 2019; Yu 2015) 

Poverty  Five studies found that higher proportions of household below poverty level were associated with 

increased pedestrian crashes (Chakravarthy et al 2010; Chimba et al 2014; Guerra et al 2019; Jermprapai 

and Srinivasan 2014; Wier at al 2009) 

Education Level  Three studies looking at education levels found that the proportion of residents without a high school 

diploma or equivalent was associated with increased pedestrian crashes (Chakravarthy et al 2010; Lin et al 

2019), pedestrian injuries (La Scala 2000) and severe pedestrian injuries (Lin et al 2019). One did not find 

the variable significant (Apardian and Smirnov 2020). 

Non-English 

Language 
 Three studies found connections between higher proportion of non-English speaking residents and more 

pedestrian crashes (Chakravarthy et al 2010; Dai and Jaworski 2016; Jermprapai and Srinivasan 2014), 

with Jermprapai and Srinivasan also finding proportion of non-English speaking residents associated with 

severe pedestrian crashes, fatal pedestrian crashes, and nighttime pedestrian crashes.  

 Two studies considered the variable but did not include it in their final models (Cottrill and Thakuriah 

2010; Lin et al 2019) 
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Variable Summary of significant findings 

Un-employment  La Scala 2000 found that higher unemployment was associated with more pedestrian injury crashes. 

 However, Chimba et al 2014 found that higher labor force participation was associate with more pedestrian 

crashes. 

Age  Studies looking at average age have found age to be associated with increased severity of crashes (Moudon 

et al 2011 

Yu 2015).  

 One study found age negatively associated with crashes, severity and nighttime crashes (Jermprapai and 

Srinivasan 2014). 

 

Proportion of 65+: 

 Of studies looking at the proportion of residents over age 65, five found that to be associated with fewer 

pedestrian crashes(Chakravarthy et al 2010;  

Dai and Jaworski 2016; Lin et al 2019; Ukkusuri 2012; Wier at al 2009), and one found it to be associated 

with more pedestrian crashes (Guerra et al 2019). 

 Two studies found higher proportions of 65+ residents to be associated with fewer severe pedestrian 

crashes(Jermprapai and Srinivasan 2014 

Lin et al 2019), while three found it to be associated with more severe crashes (Clifton et al 2009; Moudon 

et al 2011; Yu 2015). 

 

Proportion of children: 

 Studies are mixed on the impact of higher proportion of children on pedestrian crash rates. Three found 

increases in pedestrian crash rates (Chakravarthy et al 2010; Clifton et al 2009; Ukkusuri 2012), while two 

found decreases (Apardian and Smirnov 2020; La Scala 2000).  

 Another study found the proportion of kids in K-12 in a TAZ associated with more pedestrian crashes, 

while the proportion of kids age 0-15 was associated with fewer pedestrian crashes (Abdel-Aty et al 2013) 
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2.2.4 Land use 

Land use variables are often a potential proxy for the types of interactions that pedestrians or 

motorists will have on the nearby streets. Eighteen of the 22 studies included land use 

considerations in their analysis, generally looking at the proportion of land occupied by a certain 

use, or the presence or number of certain types of destinations, such as school or bars. The most 

commonly used land use variables were the presence of or proportion of land used by residential 

purposes (9 studies) and the proportion of land used by commercial purposes (9 studies). Three 

studies also looked at the proportion or presence of pedestrian-oriented commercial, while three 

looked at the presence of strip-style commercial, including big-box stores. Six studies looked at 

the proportion of land devoted to industrial purposes, and five looked at offices. Six looked at the 

presence of or proportion of land devoted to schools, and five that the presence of or proportion 

of land devoted to parks, open space or recreation. Five studies included other destination types, 

such as bars or restaurants, while three studies used measures of land use diversity in their 

models. Of studies looking at alcohol sales locations, locations with on-site sales, and bars or 

pubs in particular, were deemed to be more correlated with pedestrian crashes or injuries than 

off-premise sales locations, such as stores that sell beer, wine or liquor to go. 

In general, land uses that are significant attractors of pedestrian activity are associated with 

higher pedestrian crash risk. A national study found that, in both urban and rural areas, higher 

employment in the retail sector was associated with higher pedestrian fatality rates (Mansfield et 

al., 2018). Merlin et al found that commercial and mixed-use areas, along with areas nears 

schools, are associated with higher crash risk (Merlin et al., 2020). A study in San Francisco, 

CA, found that areas with a higher percentage of land area zoned for neighborhood commercial 

and residential neighborhood commercial, both potential pedestrian attractors, were associated 

with more vehicle-pedestrian collisions (Wier et al., 2009). A study in Los Angeles found more 

pedestrian collisions in areas of more concentrated commercial and retail land uses, and fewer 

pedestrian collisions in areas of vacant land, industrial use or office land uses (Loukaitou-Sideris 

et al., 2016).  

While denser urban areas experience more pedestrian crashes, there is evidence that they are on 

average less severe. A Florida statewide pedestrian crash analysis found that census block groups 

in urban areas had more pedestrian crashes, but fewer fatal crashes than rural areas (Jermprapai 

& Srinivasan, 2014), possibly due to the lower speeds and more walking activity - proximity to 

medical care may be related as well. Another study notes that, when controlling for miles 

walked, pedestrian fatality rates are higher in rural (and small urban) areas than in urban and 

suburban areas (Jamali & Wang, 2017). 

Consistent with the notion that higher density zones with lower density larger areas are more 

prone to pedestrian crash risk, there is considerable evidence that land uses such as strip malls 

and areas associated with arterial style big box commercial areas are connected to higher crash 

risk. A literature review of pedestrian risk factors found that rural areas and sprawling urban 

areas have higher pedestrian crash and fatality rates (not necessarily absolute numbers), which 

may be due to higher vehicle miles traveled (VMT) per capita and higher speeds (Stoker et al., 

2015). More specifically, they found that characteristics associated with urban sprawl, including 

more arterials and strip malls, and big box stores are associated with higher traffic injury rates, 
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while denser street networks are associated with fewer crashes (Stoker et al., 2015). A study in 

Florida found that density of discount stores, convenience stores and fast food stores was also 

associated with increased pedestrian crash frequency (Lin et al., 2019).  

Some studies have found that alcohol sales locations (including bars, liquor stores, restaurants, 

and grocery stores) are associated with increased pedestrian crash risk. One study in New York 

City looked at the presence or absence of alcohol outlets in a census tract, and found that the 

presence of such an outlet in a tract increased the risk of an alcohol-related pedestrian or bicycle 

crash by 47%, although the authors noted that many such tracts had concentrations of outlets, 

such as entertainment districts (DiMaggio et al., 2016). A pair of studies in Baltimore found that 

each additional alcohol outlet in a census tract was associated with a 12-14% increase in 

pedestrian injury risk (Nesoff et al., 2018, 2018). These studies attempted to control for 

confounding factors; however, it should be noted that other studies have found that alcohol 

outlets tend to be concentrated in underserved communities (LaVeist & Wallace, 2000; Pollack 

et al., 2005). 

2.2.5 Pedestrian infrastructure 

Notably, there was limited inclusion of pedestrian-oriented transportation infrastructure among 

the 22 studies included in the ecological analysis review, with 6 studies including sidewalk 

completeness measures, and 2 studies including crosswalk presence or absence information. 

There is evidence that underserved communities are less likely to have safe, accessible and high-

quality pedestrian facilities (Sandt et al., 2016). A University of Illinois at Chicago study 

conducted street fields audits in a nationally representative sample 154 communities around the 

U.S., and found that 89% of streets in high-income areas ($57k+ on average) have sidewalks on 

one or both sides of the street, while only 59% of streets in middle income ($45-57k) areas do, 

and only 49% of streets in 51-54% in low income (less than $45k) areas do (Gibbs et al., 2012). 

The literature is mixed on the relationship of the presence of sidewalks on crash risk for 

pedestrians, with some studies finding decreased risk and others finding increased risk - the latter 

may be due to the presence of sidewalks being correlated with higher pedestrian activity, and 

therefore higher exposure (Merlin et al., 2020).  

Having access to safe crossing features is a core requirement for a safe pedestrian network, 

particularly for higher volume and wide roads. A study in Los Angeles, CA, found that 40% of 

pedestrian collisions occurred in marked crosswalks at intersections, while 28% took place while 

crossing outside marked crosswalk; 12% while a pedestrian was walking along the side of the 

road (not crossing), and 20% in other locations such as on a sidewalk, in parking lot, or other 

non-road locations (Loukaitou-Sideris et al., 2016). A Florida study found that 57% of pedestrian 

crashes and 65% of pedestrian fatalities occurred outside of intersections, and recommended 

mid-block crossing signals, high visibility crosswalks, median islands, and appropriate 

landscaping (Lin et al., 2019). State roads may pose a particular threat to pedestrians. A 2011 

study in King County, WA, found that, for state routes, crossing at an unsignalized intersection 

was associated with an increased likelihood of a severe or fatal injury, though this was not true 

on city streets (Moudon et al., 2011). There is evidence that lower-income neighborhoods are 
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less likely to have crossing features. A 2012 study found that streets in high income areas are 

much more likely to have marked crosswalks (13% of streets), than middle income (8%) or low 

income (7%)  (Gibbs et al., 2012). In terms of traffic calming features such as pedestrian 

medians and islands and curb extensions, 8% of streets in high income areas have such features, 

compared to 4% in middle income areas and 3% in low-income areas (Gibbs et al., 2012). 

Two-thirds of fatal pedestrian collisions occur at night or in low light conditions, with twilight or 

the first hour of darkness having the highest frequency of such collisions (Stoker et al., 2015). 

Lack of adequate street lighting is also associated with pedestrian crashes and fatalities. A study 

in block groups in Broward and Palm Beach counties, Florida, found that a “dark-not lighted 

condition,” particularly in higher speed limit locations, was the most influential variable relating 

to severe pedestrian crashes (Lin et al., 2019). In that study 72% of pedestrian fatalities occurred 

at night, and 22% of nighttime fatalities were on streets without lighting. Loukaitou-Sideris et al 

found that, of a dozen pedestrian high-crash intersections in Los Angeles, half lacked pedestrian 

lighting (Loukaitou-Sideris et al., 2016). A University of Illinois at Chicago study found that 

75% of streets in high-income areas have street or sidewalk lighting, while only 51-54% of those 

in middle- and low-income areas have such lighting (Gibbs et al., 2012).  

2.2.6 Driver Yielding and Bias 

Several studies in recent years are uncovering bias in driver yielding behavior. A 2015 study of 

driver yielding behavior in Portland, Oregon, found that Black male pedestrians waiting to cross 

at a marked midblock crosswalk  “were passed by twice as many cars and experienced wait times 

that were 32% longer than White pedestrians” (Goddard et al., 2015). Although the study did not 

test whether this difference was due to explicit or implicit bias, the authors suggest that split 

second decisions about safety related behaviors are likely representative of implicit assumptions. 

A study of driver yielding in Las Vegas had four crossing participants, including one Black male, 

one white male, one Black female and one white female. The study found that “cars yielded 

more frequently for females (31.33%) and whites (31.17%) compared to males (24.06%) and 

non-whites (24.78%).” Further, more expensive cars were associated with decreased odds of 

yielding, with decreased 3% per $1000 increase in car value (Coughenour et al., 2020). A related 

study of driver yielding behavior in Las Vegas, which had one white female and one Black 

female crossing participant, found that yielding in the nearside lane was lower for the white 

participant, while yielding in the next lane, while the participant was already in the street, was 

lower for the Black participant (Coughenour et al., 2017). That study also found that yielding 

rates were lower in a high-income area than in a low-income area, though the authors speculate 

this may have been related to pedestrians being less common in the high-income neighborhood, 

as well as the street having higher speed limits.  
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3.0 DATA DESCRIPTION 

It is important to utilize information and data from a variety of sources to understand the role that 

race and income play in pedestrian injury outcomes.  This chapter documents the data sets 

utilized in this report, along with any transformations or calculations performed on the data 

before analysis. Basic data descriptive and / or high-level summaries of the data are included to 

help inform other sections of this technical report.   

This technical report evaluates multiple elements of pedestrian traffic injury outcomes, 

identifying disparities by social equity factors such as income and race.  To corroborate findings 

from any individual analysis, multiple analyses are performed to build confidence in any specific 

findings.  The datasets used in this research are summarized in Table 3.1 below.   

Data for the crash injury related analysis comes from three sources including ODOT, National 

Highway Traffic Safety Administration (NHTSA) and Oregon Health Authority’s (OHA) 

Oregon Emergency Medical Service Information System (OR-EMSIS).  ODOT’s Crash Data 

System (CDS) crash data file is Oregon’s traffic crash database of record and represents the best 

available data on pedestrian traffic injuries in Oregon.  NHTSA’s Fatal Accident Reporting 

System (FARS) database collects fatally injured traffic participants and has the advantage of 

collecting the race of the participant which is not collected in the ODOT data allowing for 

population-based injury rate analysis.  OR-EMSIS data is collected by EMS providers, and 

generally includes the home and incident location of crashes. US Census data is used for a 

number of socio-demographic variables, including race, income and commute mode; however, 

this dataset is for an area (e.g. Census Tract or Block Group) rather than point data – steps to 

address this discrepancy in data formats is discussed later in this chapter and elsewhere in the 

report. Built environment and traffic exposure variables that have been documented to impact 

pedestrian safety, such as vehicle miles travelled, speed, and alcohol sales, are derived from 

ODOT and other state data sources like Oregon Liquor Control Commission (OLCC) and Open 

Streets Map (OSM). Finally, additional travel activity is derived from the Oregon Household 

Activity Survey (OHAS).  
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Table 3.1: Dataset Purpose and Source Summary Table 

Dataset Agency  

Data Purpose 

Report 

Chapter 
Ecological 

Analysis 

Population-

based Rates 

Home/Crash 

Location 

Analysis 

Travel 

Activity 

Crash Data 

System (CDS) 
Oregon DOT        

Chapter 5, 

Chapter 6, 

Chapter 7 

Fatal Accident 

Reporting System 

(FARS) 

NHTSA        Chapter 4 

Oregon 

Emergency 

Medical Service 

Information 

System (OR-

EMSIS) 

Oregon Health 

Authority 
       Chapter 6 

Census Census      

Chapter 4, 

Chapter 5, 

Chapter 6, 

Chapter 7 

Built 

Environment & 

Traffic Exposure 

ODOT; OSM; 

OLCC 
      

Chapter 5, 

Chapter 6, 

Chapter 7 

Oregon 

Household 

Activity Survey 

ODOT        Chapter 3 
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3.1 OREGON DEPARTMENT OF TRANSPORTATION CRASH DATA 

SYSTEM DATA (CDS) 

ODOT CDS data is the authoritative source of crash incidents in Oregon and is developed and 

maintained by the department’s Crash Data Section. These data are derived from police records 

and driver self-reports of incidents that happen on city streets, county roads, and state highways. 

Data is available at different spatial resolutions depending on the year of interest with low spatial 

resolution for years the earlier years of data, spanning years 2002 to 2006 with higher spatial 

resolution for years 2006 to 2018. For the earliest data, the low spatial resolution allows for 

confident location in an urban area but precise geographic coordinates are not present so exact 

location is unknown making these data less useful. The 2002-2006 data has street name which 

may be geocoded but that may introduce some error into any analysis that used those derived 

coordinates.  For the purposes of this analysis, only pedestrian injuries on non-access controlled 

(functional classifications: arterials, collectors, and local) roads are used since pedestrian injuries 

on interstates and expressways likely have little to do with surrounding sociodemographic and 

built environmental characteristics.   

The point location of the pedestrian injury is used to locate the injury crash within Census tracts 

using a spatial overlay function from the sp package (Pebesma & Bivand 2005; Roger et al. 

2013) in the open-source statistical computing platform R.  This calculation uses the spatial 

precision of the crash point and Census tract spatial data to decide on a single polygon (tract) to 

locate the pedestrian injury point.  The challenge of accurately assigning crash points that fall on 

Census tract boundaries was raised by Curtis (2017) and is examined in more detail in section 

2.4 below.   

The specific location of a crash point is derived from the source data which includes either a 

police report or the DMV report filed by the driver(s) involved in a collision.  There is potential 

for these documented points to not fall exactly where the crash occurred, especially with the 

reports from DMV where the driver filing out the report is untrained in this documentation 

process or might misremember various details of the incident.   

3.2 NHTSA FATAL ACCIDENT REPORTING SYSTEM (FARS) DATA 

FARS collects traffic fatality data through state data files, with the police traffic crash report as 

the primary source. Additionally, FARS analysts use other state data, such as driver records, 

vehicle records and medical records. Trained personnel interpret and code data directly from the 

police traffic crash reports onto an electronic file.  Race of the fatality injured crash participant is 

derived from the death certificate.   

These data are available at the location of the incident for data starting in 2002 but are only 

available at the city and county level for data prior to this year.  Data for this project were 

accessed from the NHTSA FTP site and downloaded and formatted using the R statistical 

computing platform.  These data will be used to calculate age-adjusted population based 

pedestrian injury rates by race in order to understand pedestrian injury disparities in Oregon.  
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3.3 OREGON EMERGENCY MEDICAL SERVICES INFORMATION 

SYSTEM (OR-EMSIS) DATA 

ODOT crash data tracks the crash location of the incident but no information is available on the 

home location of the pedestrian crash participant.  Knowing more about the home location of 

pedestrian crash participants can help with how to best interpret findings in featured in this 

report. The OR-EMSIS data will be used to answer three questions raised by TAC members in 

this research and include: 

 What is the typical distance from home that pedestrian incidents occur? 

 How often are people in the tract in which they reside or a neighboring tract? 

 How does the race, ethnicity and income composition of their home tract compare 

with race, ethnicity and income composition of the incident tract? 

OR-EMSIS data is derived from crash incidents where an EMS provider responded to a traffic 

crash.  These data are reported to a centralized repository managed by Oregon Health 

Authority’s EMS and Trauma Systems unit.  Reporting by EMS agencies in Oregon became 

mandatory on January 1st 2019 as per Oregon Senate Bill 52 (2017) making these data useful for 

crash injury analysis.  These data are acquired through a data sharing agreement between OHA 

and ODOT Research unit.  

OR-EMSIS data are not a replacement for the ODOT crash data since they do not go through the 

same rigor of quality assurance and data element construction.  However, these data contain 

useful information such as race of crash participant, user type (pedestrian, bicycle, motorist), 

home location, in addition to the incident location, which are of use to this research.  

Specifically, these data can provide a clearer understanding of the home location of pedestrian 

relative to the location of the incident.  Chapter 6.0 uses an ecological approach to understand the 

role of zonal (Census tract) measures of residential sociodemographic factors on counts of 

pedestrian injuries measured in ODOT crash data.   

To better understand the changes in the reporting of the OR-EMSIS data the chart is provided in 

Figure 3.1 below.  The figure shows the number of injuries reported to ODOT and are grouped 

by fatal (K), severe (A), moderate (B) and minor (C) in represented by one line and another line 

that represents just fatal, sever and moderate (KAB).  The chart shows that in 2017 and 2018 the 

number of EMS records compared to ODOT injury counts for bicycle, pedestrian, and transit 

incident participants are fewer but in 2019 the recorded count of these non-driving modes nears 

parity and is even exceeded by the EMS data.  More EMS records compared to ODOT data 

might suggest that ODOT data are underreporting bicycle and pedestrian injuries which has been 

found in other crash databases where crash records start with police reports or self-reports 

(Winters and Branion-Calles 2017; Shinar et al. 2018; Langley et al. 2003) ODOT injury counts 

in the comparison below include all injuries along the KABCO index specifically injury 

severities K, A, B, and C. The KABCO index is a scale of traffic injury where K, A, B, and C 

correspond to fatal, incapacitating (severe), moderate (visible) and complaint of pain (minor) 

respectively.   
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Figure 3.1: Number of ODOT records compared to OR-EMSIS records by year 

The location of the home and incident are included as addresses in the OR-EMSIS data and 

therefor need to be geocoded for spatial analysis.  Geocoding was performed on all EMS traffic 

incident records with a valid address, city, state, and zip code for both the home and incident 

locations.  For addresses within Oregon, the Department of Administrative Services (DAS) 

geocoding service was used which includes a complete database of addresses in Oregon.  For 

home addresses outside of Oregon, a third-party geocoding service was needed.  Of the 27,220 

traffic incident home addresses geocoded, 21,060 were geocoded using DAS’s geocoding service 

and 6,120 were geocoded using the third-party geocoding service.  Addresses that were matched 

on zip code and city were not included in the analysis as that level of precision was not good 

enough to answer the questions these data are being leveraged to answer.  OR-EMSIS record 

were also discarded if the home address indicated the crash participant was homeless and without 

a home address.  Home addresses with P.O. Box addresses were also removed.   

For the pedestrian home and incident location analysis, only crash types that would be included 

in ODOT crash data are included.  Pedestrian-involved incidents were selected based on the 

codes detailed in Table 3.2 and were selected based on review of codes in the National NEMSIS 

data standard data dictionary (NHTSA 2014).  Incidents that are removed but would include 

pedestrians include clips, trips and stumbles (NEMSIS codeW18.4) and any incidents including 

both a pedestrian and other non-motorist including bicycles since ODOT data does not consider 

these traffic-related incidents.   
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Table 3.2: OR-EMSIS Incident Type Codes for Pedestrian-involved Incident 

OR-EMSIS Incident Type Codes 

Record 

Frequency % Total 

Pedestrian injured in collision with heavy 

transport vehicle or bus(V04) 3 0.3% 

Pedestrian - Collision with railway train or 

railway vehicle(V05.9) 5 0.6% 

Pedestrian - Collision with heavy transport vehicle 

or bus(V04.9) 7 0.8% 

Pedestrian injured in collision with railway train 

or railway vehicle(V05) 7 0.8% 

Pedestrian - Collision with two- or three-wheeled 

motor vehicle(V02.9) 9 1.0% 

Pedestrian - Collision with other non-motor 

vehicle(V06.9) 13 1.5% 

Pedestrian - Unspecified transport accident(V09.9) 29 3.3% 

Skateboard accident(V00.13) 32 3.6% 

Pedestrian on foot injured in collision with car, 

pick-up truck or van in traffic accident, initial 

encounter(V03.10XA) 129 14.5% 

Pedestrian - Collision with car, pick-up truck or 

van(V03.9) 183 20.6% 

Pedestrian - Collision with car, pick-up truck or 

van - Traffic(V03.1) 471 53.0% 

Total 888 100.0% 

 

Once all geocoding is performed and data is filtered based on incident type 888 pedestrian 

incidents are available for analysis.  This is close to a year’s worth of pedestrian injuries that 

ODOT records which averages about 965 pedestrian injuries per year.   

3.4 CENSUS TRACT LEVEL DATA 

A number of useful datasets for this research project will be gathered from the U.S. Census 

which tracks population counts and characteristics such as demographics data each year using a 

long form survey. Nearly 3.5 million surveys are completed each year, about 1% of the U.S. 

population which can be aggregated across years to derive meaningful statistical representations 

at smaller geographic scales with the smallest being the block group with data available for more 

aggregated geographies including tract, zip code, urban area, and county. Data elements 

collected from Census population data will include residential and job location data.   

3.4.1 Sociodemographic Data 

In addition to sociodemographic and job location information traffic exposure and built 

environment data will be utilized in the statistical analysis featured in Chapter 6.  The below 
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offers a summary of the data and calculation process used to derive the measure.  The data 

summarized in Table 3.3 includes two periods of data including 2008 to 2012 and 2014 to 2018 

for 520 urban area tracts.  Rural tract models were explored as a part of this research but have not 

been fully developed.   

Table 3.3: Urban Area Tracts Summary Statistics  

Urban Area Tract Data Elements Urban Tracts (n = 1040) 

Pedestrian Injury Mean Median Sd. 

Fatal & Severe Injury 1.21 1 1.56 

Total Injury 6.83 5 7.77 

Sociodemographic & Population 

Median Income (thousand) 58.96 54.58 24.57 

% Black 0.03 0.01 0.04 

% Asian 0.05 0.03 0.06 

% Latinx 0.13 0.09 0.11 

% BIPOC 0.22 0.2 0.11 

% Hhs Limited English Proficiency 0.07 0.04 0.06 

% Hh Disability 0.25 0.24 0.09 

Average Daily Population 5328 4278 4038 

Traffic Exposure & Built Environment 

VMT on Major Arterials (million) 1.33 1.01 1.62 

Miles of Non-Interstate Roads w/ 45 mph+ 0.05 0 0.12 

Miles of Non-Interstate Roads w/ 35 mph+ 0.13 0.1 0.16 

Mean Width of Arterials 9.58 12 5.05 

Sidewalk Miles (ODOT System) 2.78 0.77 4.85 

Sidewalk Rated Poor (Mi.) (ODOT System) 0.19 0 1.07 

Sidewalks Rated Substandard (Mi.) (ODOT 

System) 1.98 0.44 3.35 

Low Wage Jobs Density (thousands per 

sqmi.) 0.61 0.31 1.2 

Less than College Job Density (thousands per 

sqmi.) 0.54 0.47 0.36 

% Walk Commute 0.05 0.03 0.06 

% Transit Commute 0.06 0.04 0.06 

Transit Stops 32.16 30 20.65 

% Households with Zero Vehicles 0.09 0.07 0.08 

Total Jobs Density (thousands per sqmi.) 2.73 1.13 7.26 

Alcohol Establishment Density (per sqmi.) 107.8 44.25 232.3 

Intersection Density (per sqmi.) 0.36 0.27 0.29 

Tract Land Area (sqmi.) 1.61 1.11 1.56 
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Fatal, severe and total pedestrian injury counts by tracts come from ODOT’s CDS crash data file.  

These data are assigned to the census tract in which they are located with no manual adjustments.  

For the demographic measures such as percent Black and percent Asian the total number of 

people in these Census categories are divided by the total population in the tract to calculate the 

proportion.  In the statistical modeling featured in Chapter 6 a measure of daytime population is 

used as an offset which enables the models to account for population along with the other 

covariates.  The calculation of daytime population is shown in equation 2-1 below.  The 

calculation for commuter-adjusted or daytime populations comes from U.S. Census Bureau 

recommended calculation and is represented below by the variable Popt.  This value is aimed at 

representing an estimate of people who are present in an area during normal business hours (U.S. 

Census Bureau 2017).   

𝑷𝒐𝒑𝒕 = 𝑹𝒆𝒔𝑷𝒐𝒑𝒕 + (𝑾𝒐𝒓𝒌𝒆𝒓𝒔 𝑾𝑨𝑪𝒕 −𝑾𝒐𝒓𝒌𝒆𝒓𝒔 𝑹𝑨𝑪𝒕) 

(3-1) 

Where: 

Popt is the average daily population in tract t 

ResPopt is the residential population in tract t 

WorkersWACt is the number of workers working in tract t 

WorkersRACt is the number of workers living in tract t 

3.4.2 Built Environment and Traffic Exposure 

Information on the VMT and roadway speeds data are derived from data maintained by ODOT’s 

Transportation System Monitoring Unit in the Table of Potential Samples (TOPS) dataset and 

are reported to the Federal Highways Administration on an annual basis through the Highway 

Performance Monitoring System (HPMS). These data are available at a disaggregate level for all 

streets with a functional classification of minor collector and above for years 2011 through 2019. 

Since the scale of these data is at the network level these data were aggregated to Census tracts 

for use in analysis.  Since many roads run along tract boundaries VMT is equally apportioned to 

any tract that intersects with the tract boundary.  The TOPS data also features measure of posted 

speed and if a traffic median is present the width which are also summarized to the tract level.   

Information on sidewalks is derived from a database of sidewalk data that ODOT maintains for 

the state system and does not include non-state owned roads or adjacent sidewalks.  These 

measures are aggregated to the tract level based on their location within the tract with no double 

counting for being near a Census boundary.  Two attributes of the ODOT sidewalk system are 

used including the condition and whether or not the sidewalk adheres to the agency standard.  

Condition is a statement of the physical condition of the pavement and includes three ratings 

summarized below (ODOT 2020): 

 Good (G): Smooth, new pavement. Only to be used for new construction. 
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 Fair (F): Reasonably smooth pavement, safe to walk on. 

 Poor (P): Pavement that is cracked, heaved, eroded, etc. Pavement which is dangerous 

to walk on or is impassable by a wheelchair or stroller. 

Employment data, including worker employment location comes from the Longitudinal 

Employment-Household Dynamic (LEHD) program database. These data allow for assessments 

of employment location down to the Census block but were aggregated to the tract level for this 

analysis. Disaggregate measures of job type by industry and wage are available and used in the 

analysis featured below.  

Data on the percent of workers that commute by walk and transit comes from the U.S. Census 

and is available at the block group level but for this research these measures were aggregated to 

the tract but otherwise used as is with no calculations.  Similarly, the number of vehicles per 

household was taken as is from Census for use in this analysis.  Transit stop information is 

derived from statewide database of General Transit Feed Specification (GTFS) based data.  The 

location of stops are available for the entire state because ODOT’s Public Transit Division has 

spent resources and staff time making sure all relevant transit providers in Oregon collect their 

service information and submit it using this data standard.  Ideally ridership data at the stop 

location would be available but unfortunately transit agencies have not yet adopted the related 

GTFS ridership component GTFS-ride to standardize these data so ridership data at the stop level 

is not available statewide.  Lastly, the number of alcohol establishments was determined by using 

data from the Oregon Liquor Control Commission (OLCC) which tracks the count and address 

of liquor licenses.  These data were geocoded using a statewide address database from the 

Department of Administrative Services (DAS) geocoding service.  Addresses that were not able 

to be matched at the address level were discarded. On average the total number of addresses that 

were discarded was 632 to 774 or 7% to 8% of the total records.  Table 3.4 summarizes the 

geocoding results below.   

Table 3.4: Oregon Statewide OLCC Address Geocoding Results   

Year 

Address Geocode Match Result Acceptable 

Match % 

Total 

Addresses Acceptable Unacceptable 

2008 7,495 632 92% 8,127  

2009 7,699 642 92% 8,341  

2010 7,750 642 92% 8,392  

2011 7,952 645 93% 8,597  

2012 8,086 663 92% 8,749  

2013 8,296 703 92% 8,999  

2014 8,592 700 93% 9,292  

2015 8,798 709 93% 9,507  

2016 9,084 726 93% 9,810  

2017 9,168 765 92% 9,933  

2018 9,503 774 93% 10,277  
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3.5 OREGON HOUSEHOLD ACTIVITY SURVEY (OHAS) 

The OHAS data includes 17,941 households in Oregon where all the people in the household 

were asked to keep a diary of all travel-related activities for an assigned 24-hour period. Travel 

periods were evenly distributed throughout the weekdays when school was in session and 

respondents were asked to complete logs by mail and telephone.  Results were compiled into a 

statewide database which are used to inform travel models among other descriptive uses. The 

survey documented daily weekday household travel patterns of 17,941 households randomly 

sampled from among the 1.5 million Oregon households (Bricka 2019).  The survey design 

focused on acquiring data that would allow for the generation of travel activity summaries by 

some sociodemographic groups like income and number of workers. Census data were used to 

create statistical weights to ensure the data are demographically representative but ODOT 

reported that because of lower participation rates by BIPOC groups and young adults the ability 

to generalize results is limited.  The major implication for the lack of participation by certain 

race and ethnicity groups is that disaggregate measures of race and ethnicity are aggregated to 

improve reliability of the travel activity measures.  Even with the aggregation of low income 

populations and BIPOC participants, measures should be considered estimates with some 

measure of error.  Additionally, the OHAS survey collected income and race for the household, 

and not for the specific individuals within the household.  This level of data collection is aimed 

at informing household based travel demand models and is sensible for income but is 

problematic for race. It’s not unusual for people of different races to live in a single household 

together so categorizing all individuals in a household as one race creates additional error when 

reporting findings on race.  For summaries below Asian, Black, Native Hawaiian, Pacific 

Islander, Native American and Alaskan Native and Latinx survey participants were all grouped 

into the BIPOC category to increase the statistical precision of summaries below.  For the 

reasons described, since the survey was not structured to be representative for each disaggregate 

racial group some groups have too few trips to reliably document travel behavior.   

3.6 USING CRASH POINTS AND CENSUS TRACT POLYGONS 

Statistical analysis methods, described in Chapter 7, model factors associated with pedestrian 

crashes at the Census tract level.  One potential concerns about linking crashes (points) and tracts 

(polygons) is that traffic crashes occurring on the boundaries of Census tracts might present 

problems for subsequent analysis.  The potential issue would be that points on boundaries could 

be double counted or erroneously assigned to a neighboring Census tract. In order for this issue 

to impact the study findings, several factors would need to be true – first, characteristics of 

neighboring tracts (such as income or racial breakdown) would have to be significantly different; 

second, there would have to be a significant bias pushing the erroneous assignment of points to 

polygons in as specific direction. This section explores this concern and documents relevant 

literature on the topic.   

Analysis of the Census tract data is performed below, and demonstrates the following key 

findings: 
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 Assigning points on boundaries to one tract versus its neighbor likely has minimal 

impact due to significant autocorrelation, or the tendency of neighboring tracts to 

resemble one another. 

 We have no reason to believe that there is a particular bias by which a point get 

assigned to a polygon, which limits the likelihood of any systematic bias being 

introduced into the analysis. 

 The Race, Ethnicity and Income Index method reduces the point-on-boundary issue 

by dissolving boundaries of many tracts creating ‘super’ polygons based on index 

value. 

 

Figure 3.2: Crash point on census boundary example 

For all the pedestrian injury data available from ODOT’s crash data file, which includes 8,851 

pedestrian crashes between the years 2008 and 2018, 60% of pedestrian injury crashes are placed 

farther than 5m from a Census boundary and are therefore not on any Census tract boundary 

while 35% are on a boundary of two tracts, 4% on a boundary of three tracts, and 1% on a 

boundary of four tracts (see Table 3.5).  Because 40% of pedestrian injury crashes occur on a 

Census tract boundary the examination below is worthwhile.   
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Table 3.5: Summary of Instances that Pedestrian Injuries Fall on Census Tract Boundaries 

(2008-2018 Data) 

Intersecting Tract 

Boundaries Records % 

1 5,343  60% 

2 3,066  35% 

3 345 4% 

4 97 1% 

Total 8,851  100% 

 

There is no established literature that this report’s authors are aware of that preclude the use of 

joining information from polygons to points, which is standard practice in many ecological 

analyses.  As described in the literature review, the project team reviewed at least 20 studies that 

analyzed factors associated with pedestrian crashes by assigning crash points to geographic 

polygons (typically tracts or polygons) to explore the relationship between crashes and factors 

such as Census-derived population level data. We reviewed these papers to see if they noted the 

challenge of assigning crashes that occurred on polygon borders. Of the 20 papers, 16 did not 

address this potential concern. Two noted the potential issue, but indicated that they felt the issue 

was of minimal concern. Chakravarthy et al (2010) noted that while “collisions occurring near 

census tract boundaries may have been assigned to the wrong census tract,” they “we would 

expect this misclassification to be nondifferential with respect to poverty and other population 

characteristics and to diminish measures of association.” Similarly, Wier et al (2009), noted that 

there could be “erroneous census-tract assignment for some collisions that fall on census-tract 

boundaries,” but that they did “not have reason to believe that there would be systematic bias in 

this error." Two studies took small steps to reduce the potential error that could be introduced 

through this issue, with one assigning the mean value of both tracts to crash points when crashes 

occurred on borders (Dai and Jaworski 2016), while another, which was assigning crash counts 

to block groups, buffered the block groups by 200 feet, generally resulting in crashes on border 

roads being included in both block groups (Dumbaugh and Li 2010). 

We identified another paper that looked at the potential for double counting points (traffic 

incidents) when the points fall on a polygon (Census tract) boundary (Curtis 2014). The author 

concludes: “there is no reason to question the standard GIS practice of aggregating points to 

polygons” but offers that the joining methods should be well-understood so that scholars are 

aware of the methods their technology is using to compute the results.  

3.6.1 Spatial Autocorrelation of Census Tract Level Information 

At the heart of the point-on-polygon boundary issue is whether bias is injected into subsequent 

analysis because of a miss-assignment of the point to the tract.  However, because neighbor 

tracts typically reflect values of the ‘home’ tract the risk of bias is low.  This concept, known as 

spatial autocorrelation, is a well-known phenomenon in geospatial analysis.  Spatial 

autocorrelation describe the existence of systemic spatial variation in a given variable (Haining 

2003) and arises when adjacent observations exhibit similar values.  This phenomenon can 
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present issues in statistical analysis and should be investigated though do not necessarily 

introduce bias (Diniz, Bini, & Hawkins, 2003).   

We will explore autocorrelation for the Census tract data used in this research to help understand 

the potential of bias being introduced by assigning crash points to one tract versus a neighbor 

tract.  Spatial autocorrelation is computed using Moran’s I which defines the ratio between the 

local and the global coherence (Schmal et al. 2017; Gao et al. 2019) using the following formula:  

𝑰 =  
𝟏 ∑ 𝒘𝒊𝒋(𝑿𝒊 − �̅�)(𝑿𝒋 − �̅�)𝒊𝒋

∑ 𝒘𝒊𝒋𝑵−𝟏
𝒊𝒋 ∑ (𝒊 𝑿𝒊 − �̅�)𝟐

 

(3-2) 

Where: 

N describes the number of observations locations 

Xi and Xj are the values of observation at location i and j respectively  

�̅� describes the mean value of all observations  

Using this formula, we find that Census tract information is spatially auto correlated for most key 

variables using in the analysis, meaning that tract level characteristics are typically similar to 

nearby tracts.  To compute spatial autocorrelation we first compute the values of the nearest 

neighbors for each Census tract and assign equal weight to each tract that touches the queen 

(noted as tracti).  For example, Figure 3.3 shows how BIPOC % for select tracts are used to 

compute Moran’s I.  In the example, Census tract 41047001602 represents Tracti (queen tract) 

while the other tracts represent Tractsj.  Since we are giving equal weight to Tractsj we can 

simply average their BIPOC values which include 49.7%, 44.6%, 44.9%, 43.3%, and 36.4%.  

The mean of these values is 43.8% which compared to 46.1% is very similar.  For Moran’s I, do 

this calculation for all Census tracts and the composite measure, the slope between the composite 

neighbor values and the queen tract is Moran’s I.  For the BIPOC % measure the results reveal a 

Moran’s I of 0.52 which suggests strong positive autocorrelation.  This can also be observed in 

the chart featured in Figure 3.4 where the spatial lag variables are compared with the queen tract 

(Tracti) values.  
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Figure 3.3: Example of spatial autocorrelation and Moran’s I calculation– Salem, OR 

urban area  

 

Figure 3.4: Correlation between spatial lag and tract BIPOC % values 
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Using variables from models featured in Chapter 7 below Moran’s I is calculated for multiple 

sociodemographic, built environment, and traffic exposure variables and presented in Table 3.6.  

This summary shows a range of Moran I values from 0.107 to 0.745 with the majority of values 

showing significant positive autocorrelation.  Higher values indicate a greater amount of spatial 

autocorrelation compared to values closer to zero. 

Table 3.6: Summary of Moran’s I Values for Select Variables 

Variable Moran’s I 

Asian % 0.627 

Black % 0.609 

Latinx % 0.560 

BIPOC % 0.521 

Median Income 0.527 

Poverty % 0.360 

Disability % 0.556 

Limited English Proficiency % 0.608 

VMT on Major Arterials 0.107 

Miles of Roadway 45 mph+ 0.541 

Miles of Roadway 35 mph + 0.514 

Mean Arterial Width 0.351 

Total Sidewalk Miles (ODOT System) 0.589 

% Households with Zero Vehicles 0.450 

Mean Transit Stops 0.554 

% Workers Commute by Walk 0.411 

% Workers Commute by Transit 0.745 

Less than College Education Job Density 0.703 

Total Job Density 0.415 

Alcohol Establishment Density  0.525 

Intersection Density 0.684 

Miles of Sidewalk in Poor Condition (ODOT System) 0.182 

Miles of Sidewalk in Substandard Condition (ODOT System) 0.551 

Low Wage Job Density  0.475 

 

The implication of this autocorrelation is twofold.  First, when crash points are on a boundary of 

multiple Census tracts, the risk of biasing the overall analysis is low since tracts near one another 

typically exhibit similar values.  Second, the analysis needs to account for the presence of spatial 

autocorrelation otherwise standard errors may be biased giving a false assessment of precision.  

More description of how this is handled is available in Chapter 7 below.   
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3.6.2 Point-on-polygon Boundary Issue with REII Analysis 

Even if Census tracts were not auto correlated (we find that they are) and if there were a bias 

pushing points toward particular polygons in a systemic way that could cause bias (we don’t 

have reason to believe there is), analysis conducted in Chapter 5 of this study suggests that the 

pedestrian safety disparities could not be caused by point assignment error or bias. This section 

documents instances in which points are present on polygon boundaries when using the REII 

index approach featured in Chapter 5.  The analysis in that chapter uses a standardized scoring 

method to assign an index value based on the percent of the population that is BIPOC or lives 

under the poverty line.  The REII index, which is described in more detail in Chapter 5, uses 

index categories including Lowest, Low, Moderate and High concentration of BIPOC and 

poverty.  Partially explained by the autocorrelation demonstrated in section 2.5.1 above, 

significant clustering of these index values occurs especially in Oregon’s large urban areas.  An 

example of this REII clustering is presented in Figure 3.5 below.  This figure shows that index 

values tend to cluster into larger groups (super polygons) of similar values as exhibited by the 

large number of contiguous High (blue) REII tracts.   

 

Figure 3.5: Example of spatial clustering of REII values – Salem, OR urban area  

This figure also highlights how the point-on-boundary issue diminishes since points previously 

on Census tract boundaries are no longer on boundaries of these larger agglomerations of Census 

tracts.  The diminishing instances of points on polygon is further highlighted in Figure 3.6 below 

where tracts are dissolved on the REII index values.   
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Figure 3.6: Tracts dissolved by REII index value – Salem, OR urban area 

Figure 3.6 shows the tracts dissolved by REII value to highlight how the point-on-boundary 

issues dissipates when these super polygons are used to aggregated pedestrian injuries as is done 

in Chapter 4 analysis.  Using these ‘super polygons’, for years 2008 through 2018, the number of 

pedestrian injuries that are located on a boundary is just 23%.  The implication of this outcome is 

that the uncertainty of appending a pedestrian injury point is diminished when using the REII 

approach.   

Table 3.7: Summary of Instances that Pedestrian Injuries Fall on Census Tract Boundaries 

(2008-2018 Data) 

Intersecting REII Super 

Polygon Boundaries Records % 

1 6,802 77% 

2 1,953 22% 

3 96 1% 

Total 8,851 100% 
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4.0 TRAVEL ANALYSIS BY RACE AND INCOME 

This section analyzes travel behavior with a specific focus on race and income in order to 

provide contextual information for the crash related analysis in latter chapters.  Primary findings 

from this chapter include the following: 

 People in households living at or below the poverty line travel more miles by walking 

compared to people living above the poverty line.   

 People living in households classified as BIPOC travel more miles by walking than 

people in households classified as White.  This is likely because the average 

household income of BIPOC households is less than White households.   

 People in households living at or below the poverty line travel more miles by transit 

compared to people living above the poverty line.   

This travel behavior analysis uses available data from the most recent household travel survey 

conducted in Oregon.  The household travel survey data is derived from the 2009 to 2011 

Oregon Household Activity Survey (OHAS).   

4.1 OHAS TRAVEL ANALYSIS BY INCOME AND RACE 

The table below summarizes by race category and poverty status the total trips and persons 

surveyed in the 2009-2011 OHAS travel survey and includes measures that characterize the 

weighted and unweighted measures of trips and person.  For all modes of travel, the weighted 

number of trips include 13.5 million (157,000 unweighted) trips for 3.74 million (42,208 

unweighted) people.  For the state as a whole the average number of trips taken by all modes 

(drive, passenger, walk, transit, bike, motorcycle, etc.) was 3.6 trips per weekday.  This statewide 

trip rate 3.6 is roughly one trip more per weekday than the 2.5 trips per weekday measured for 

people living at or below the poverty line.  For BIPOC survey respondents, the average trip rate 

is 2.7 trips per weekday.  For all race/ethnicity categories, poverty status is a strong predictor of 

total trip making with differences between people living below the poverty line and those above 

the poverty threshold existing in all racial categories.  Poorer BIPOC households also take fewer 

trips than poor White households with BIPOC households living in poverty taking 2.0 trips per 

weekday compared to 2.8 trips for White households.   
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Table 4.1: All Mode Trip Rate by Poverty Status and Race 

Poverty Status 

Aggregate 

Race/Ethnicity 

Category 

Total Trips 

(Expanded 

Survey) 

Trips 

(Unweighted) 

Persons 

(Expanded 

Survey) 

Persons 

Surveyed 

Trip Rate 

(Weighted) 

Above Poverty 

BIPOC 

718,764  6,598  207,550  1,866  3.5 

At or Below Poverty 428,196  2,137  210,619  724  2.0 

Refused 50,473  420  21,252  140  2.4 

Statewide 1,197,433  9,155  439,421  2,730  2.7 

Above Poverty 

White 

10,061,950  126,099  2,593,585  33,360  3.9 

At or Below Poverty 1,101,274  8,490  390,967  2,513  2.8 

Refused 720,018  8,504  183,348  2,271  3.9 

Statewide 11,883,242  143,093  3,167,900  38,144  3.8 

Above Poverty 

Other 

154,377  1,413  42,221  369  3.7 

At or Below Poverty 28,663  207  19,496  62  1.5 

Refused 20,589  160  4,340  39  4.7 

Statewide 203,630  1,780  66,057  470  3.1 

Above Poverty 

Refused 

166,840  2,401  47,515  655  3.5 

At or Below Poverty 49,375  213  12,036  64  4.1 

Refused 46,761  540  11,552  145  4.1 

Statewide 262,976  3,154  71,103  864  3.7 

Above Poverty 

Statewide 

11,101,931  136,511  2,890,872  36,250  3.8 

At or Below Poverty 1,607,508  11,047  633,118  3,363  2.5 

Refused 837,841  9,624  220,493  2,595  3.8 

Total 13,547,280 157,182 3,744,483 42,208 3.6 
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The figure below uses the OHAS travel survey data to calculate miles of travel by select modes.  

These per capita miles of travel by mode are broken out by poverty status of the household.  

Figure 4.1: Figure 4.1 shows that for people living in poverty, there average weekday miles of 

travel as a pedestrian is 0.18 miles compared to 0.12 miles for people living above the poverty 

line.  Transit use is also higher for people living in poverty with average weekday per capita 

miles of travel of 0.8 miles compared to 0.47 for people living above the poverty line.  

Conversely, people living in poverty drive less with just 6.3 miles per person compared to 16.8 

miles for people living above the poverty line.   

 

Figure 4.1: Miles of travel by poverty status for select modes 

Figure 4.2 below summarizes per capita travel by select modes by race category including White 

and BIPOC.  Because BIPOC households were more likely to be lower income than White 

households ($48,000 vs. $54,000) the figure above reflects similar outcomes shown in Figure 

4.1.  In Figure 4.2 people living in a household designated as BIPOC walked 0.17 miles 

compared to 0.12 miles for survey respondents in households that are White.  Miles of travel by 

transit also showed some difference with people in BIPOC households traveling 0.57 miles 

compared to 0.52 for people in White households. This figure also shows the miles of travel by 

driving displaying 8.3 miles of per capita travel for people living in BIPOC households 

compared to 16 miles of driving per person in households classified as White.   
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Figure 4.2: Per capita travel by race category 

Figure 4.3 below shows per capita miles of travel for select modes broken out by both poverty 

status and race category.  Because of the intersection of poverty and race this chart attempts to 

show how even after controlling for poverty status some travel behavior differences persist.  For 

walk miles of travel, BIPOC households living at or below the poverty line travel 0.22 miles of 

travel per person compared to 0.17 miles per person for households that are classified as White.  

Both of these measures of walk miles appear significantly different than the state average.  For 

transit miles, BIPOC households living in poverty do not appear to travel more miles than 

BIPOC households living above the poverty line when considering the margins of error.  

Households classified as White that are living below the poverty line appear to travel 

significantly more miles by transit than BIPOC households (living under the poverty line) and 

more than the average household classified as White.   For driving miles, per capita miles driven 

by BIPOC households living in poverty is just 4.2 miles per person compared to 12.5 miles for 

BIPOC households living above the poverty line.  This is less driving compared to households 

classified as White where for people living below the poverty line drive 7.7 miles per person.   
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Figure 4.3: Per capita miles of travel by poverty status and race category 

4.2 OHAS TRAVEL ANALYSIS SUMMARY 

Figures presented in this chapter highlight the increased pedestrian exposure faced by low 

income people and BIPOC populations.  Income is a significant predictor of walk miles but there 

is some residual differences even after controlling for poverty as shown in Figure 4.3 though 

income is certainly the main effect.  Transit usage by race category showed no significant 

difference but instead is primarily a function of poverty status.  These findings should inform 

findings documented in Chapters 4 and 7 where disparities of pedestrian injuries shown to exist 

based on race and income.  It is logical to conclude that people who walk more are more likely to 

be involved in a pedestrian traffic incident, all else being equal.  Transit miles are a related 

exposure considering many people access transit by walking.  
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5.0 FATAL ACCIDENT REPORTING SYSTEM (FARS) 

ANALYSIS 

This section details analysis of the Fatal Accident Reporting data in order to understand fatal 

pedestrian injury rates by race.   A summary of findings in this chapter include: 

 Pedestrian injury rates for the most recent period of data show that Black, Indigenous 

and People of Color (BIPOC) experience a higher burden of pedestrian injury 

compared to the state average.  (2.8 deaths per 100K for BIPOC compared to 2.1 

deaths per 100K for all people in Oregon ) 

 In the most recent period of data, Black people experience the highest rate of 

pedestrian injury followed by American Indian and Alaskan Native, Latinx, and 

Asian. 

 Pedestrian injury disparities vary over time with earlier periods of data exhibiting 

smaller disparities between BIPOC populations and the state average. 

5.1 FATAL INJURY RATES CALCULATION METHODS 

These data are the only data that directly measure the race of the pedestrian involved in a fatal 

crash and when paired with population data from Census are valuable to understand disparate 

injury outcomes.  Fatal injury burden is measured using age-adjusted rates (Anderson & 

Rosenberg 1998) and is calculated using the counts of fatal injuries combined with population 

counts of people by age cohort for each race adjusted by using the US population as the standard 

population.  Age-adjusted rates are important tools in the epidemiology because they account for 

the variability of age-specific mortality rates and make comparisons across geographies possible.  

These rates are calculated using the following equation: 

𝑫

𝑵
= 

∑𝒅𝒊

𝑵
= 

∑𝒏𝒊 (𝒅𝒊/𝒏𝒊)

𝑵
 = ∑(𝒏𝒊 /𝑵)(𝒅𝒊/𝒏𝒊) = ∑𝒘𝒊(𝒅𝒊/𝒏𝒊)  

(5-1) 

Where: 

D = deaths (fatally injured pedestrians) 

N = population (Oregon) 

i = age-stratum  

di = age-stratum specific deaths 
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ni = age-stratum specific population     

wi = weights from standard population 

These calculations are equivalent but when comparing Oregon-specific rates to other states for 

instance, the age-adjusted result should be used to account for age differences in the populations 

being compared.  The results reported in this chapter present rates using person years which uses 

the total population over multiple years as opposed to the population for any one year.  This 

principle of epidemiology aims to more accurately capture the time people are exposed to a 

given disease or health outcome, in this case pedestrian injuries.  Compared to a single year of 

population, rates using person years will be lower but differences between groups, in this case 

race, will remain relatively stable.   

Since most of Oregon’s population is white, the number of pedestrians in BIPOC categories can 

be small for some time periods so rates are an important normalizer to help understand disparate 

outcomes.  This research utilizes guidance that Oregon Health Authority’s Health Promotion and 

Chronic Disease Prevention unit developed titled Guidelines for Reporting Reliable Numbers 

(2018).  This guidance recommends that for individual strata at least 12 observations are 

available to report without a notice of caution for statistical reliability.  Additionally, this guide 

recommends that if the calculated standard error exceeds 30% that readers are notified of the 

potential unreliability of the reported quantity (OHA 2018).  This chapter follows that guidance 

by including the three instances where the standard error threshold is not met.  These instances 

include the rates calculated for both periods of data for Native Hawaiian and Pacific Islander 

where counts of pedestrian injuries are very low.  The third instance of unreliable estimates 

occurs for Black pedestrian rates in the 2009-2013 period where counts of pedestrian deaths are 

too small to accurately determine statistically significant differences compared to the state 

average.  Margins of error are also shown which can help readers see where the precision of the 

calculated rate makes meaningful comparisons problematic.   

Age-adjusted population-based rates are a measure of the burden on the population of a given 

health outcome, in this case the burden of fatal pedestrian traffic injury.  Using FARS pedestrian 

injuries and population data from the Census for each age cohort, these rates can be calculated to 

understand whether disparities exist based on race.  In addition to the age-adjusted rates, margins 

of error are presented which describe the confidence intervals of the fatal injury rates.  

Confidence intervals are measures of uncertainty associated with the age-adjusted injury rates 

(Burruss and Bray 2005). A large standard error and confidence interval reflect a less certain 

estimate. The size of these measures depends on the number of deaths (numerator) and the base 

populations (denominator) for each group. Large numbers of deaths and large base population 

lead to greater certainty in estimating age-adjusted death rates. These measures do not 

incorporate uncertainty associated with age misreporting or inconsistencies in racial and ethnic 

identification and do not attempt to handle issues of underreporting.   

5.2 FATAL INJURY RATES BY RACE CATEGORY 

The results presented in Figure 5.1 document the five-year fatal injury rates and highlight the 

disparate pedestrian fatal injury outcomes of BIPOC populations, with Black people facing the 
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highest disparities in this period of data with 4.7 pedestrian fatalities per 100,000 people.  Native 

Hawaiian and Pacific Islander (NHPI) people have a high rate but the low number of fatalities 

and base population results in a statistically unreliable rate.  The next highest rate is for 

American Indian and Alaskan Native (AIAN) followed by Latinx and then Asian people with 3, 

2.7, and 2.4 pedestrian fatal injuries per 100,000 people respectively.  An aggregate rate was also 

calculated that aggregates all BIPOC fatalities and base population and shows that overall the 

pedestrian injury rate for BIPOC is 2.8 pedestrian fatal injuries per 100,000.  The rates for all 

BIPOC populations (except for NHPI) are significantly (considering the confidence intervals) 

higher than the state average and higher than the rate for White people. 

 

Figure 5.1: Age-adjusted fatal injury rates per 100,000 people 2014-2018 

Though the rates show a significant disparity in the most recent data these rates vary over time.  

Figure 5.2 below shows two five-year periods including the years from 2009 to 2013 and 2014 to 

2018.  The mid-point for the rate is shown as text in the chart for clarity.  American Indian and 

Alaskan Native populations exhibit a higher burden of pedestrian death in both periods with the 

disparity shrinking between periods.  The pedestrian fatal injury rate for Asian populations was 

slightly lower (though not significantly) than the state average in the first period but increased in 

the second period to be higher than the state average.  The rate for Black populations was at or 

near the state average for the first period but then increased too over two times the state average.  

The rate for Latinx populations was 33% higher than the state in the first period and increased to 

75% higher than the state average the latter period.  For Native Hawaiian and Pacific Islander 

populations there were no recorded pedestrian traffic deaths in the first period and so no reported 

rate and therefore this population has been masked from the figure.  The rate for BIPOC 

population as a composite group 10% higher than the state average in the earliest period of data 
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but then increases in the second period to be 15% higher in the latter period.  The rate for White 

populations slightly lower than the state average in the first period with the difference growing 

into the second period.   

 

Figure 5.2: Age-adjusted fatal injury rates per 100,000 people over time 
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6.0 RACE, ETHNICITY AND INCOME INDEX ANALYSIS  

This section uses a social vulnerability index to assess whether areas with higher proportions of 

low-income and / or BIPOC residents are subject to higher levels of pedestrian injury and 

fatality. The analysis also looks at whether these areas have differing built environment or traffic 

characteristics, such as higher speed and volume arterials, that are associated with pedestrian 

crashes. Key findings in this chapter include: 

 Some Census tracts have significantly higher rates of poverty and BIPOC population 

 Tracts with higher concentrations of poverty and BIPOC populations experience 

higher rates of pedestrian fatal and severe injury.   

 Tracts categorized as High represent 25% of the state’s population (1.002 million 

people) but 40% of the fatal and severe injuries and 45% of the total pedestrian 

injuries. 

 The rates of pedestrian injury in tracts classified as Moderate and High have 

increased by 18% and 13% compared to 1% and 7% for tracts classified as Lowest 

and Low poverty and BIPOC population.   

Many versions of composite indices exist that collapse multiple factors into a single index value 

with an aim to simply measures of social disadvantage or social vulnerability.  The Centers for 

Disease Control (CDC) have constructed a Social Vulnerability Index (SVI) that employs 14 

variables from the Census including proportion of people 17 years of age and below, people 65 

years of age and above, single parent households with children 17 years of age and below, 

racial/ethnic minorities, and people living in group quarters, proportion of people below poverty 

level, unemployed, no high school diploma among people 25 years of age and above, people who 

have limited English proficiency, housing infrastructure with 10 or more units, households that 

have more people than rooms, mobile homes, no vehicle access, and per capita income.  

The variables are used in the Race/Ethnicity and Income Index (REII) for this work and include 

the following measure: 

 Poverty Rate - Percent of the population living at or below the poverty line 

 BIPOC % - Percentage of the population that are American Indian or Alaskan Native, 

Asian, Black, non-White Hispanic, and Native Hawaiian or Pacific Islander 

These population factors are used to calculate z-scores, or standardized scores to determine if the 

given measure is higher or lower relative to the mean of that value, in the case the statewide 

average.  Z-scores are helpful tools for locating individual observations that differ significantly 

from the mean.  Z-scores are based off of population metrics, meaning they represent where a 

particular value falls relative to the entire population, not the sample of interest. A positive Z-
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score means that a particular corresponding raw score fell above the population mean or average. 

A negative Z-score represents a raw score that falls below the population mean. The numerical 

value of the Z-score is actually the number of standard deviations above or below the mean, 

depending on the sign of the score. A Z-score in the middle of the normal distribution has a mean 

of 0 and a standard deviation of 0, meaning that the score falls in the exact center of the normal 

distribution (Frey 2018).  Because Z-scores standardize the values for individual metrics (e.g. 

Poverty, % BIPOC, etc.) multiple metrics can be combined into an index.  Z-scores are 

calculated for each metric using the following equation.   

𝒁𝒊𝒅 =
𝒙𝒅 − 𝝁𝒅

𝝈𝒅
 

(6-1) 

Where: 

Z is the standardized score for tract I for REII measure d   

x is the REII  measure for tract I for element d 

μ is the average statewide value of REII measure d 

σ is the standard deviation of the REII measure  d 

The index represents the composite score of the combined metrics by adding each z-score 

together.  The resulting index measure shows how the select measures compare relative to the 

mean of the population (the state average).  Based on the number of standard deviations from the 

mean, these composite index values are then grouped into lowest, low, moderate, and high social 

vulnerability based on their distance from the mean.  For this research the thresholds for the low 

and moderate category were set slightly below the standard deviations to ensure these categories 

has adequate population and pedestrian injuries.  Figure 6.1 shows where those cut points fall 

and how many census tracts are included in each of the REII categories.   
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Figure 6.1: Distribution of composite Z-scores for social vulnerability index 2014-2018 data 

Using the REII to categorize Census tracts in this way simply reveals where there are 

concentrations of people above and below the state average for the selected socio-demographics.  

Using these categories, relevant injury, travel, and built environment measures are summarized 

in Table 6.1 and shows how the REII elements relate to the overall categories.  For instance, in 

the lowest REII category the average percentage of the population living in poverty, for all the 

tracts included in this REII category, is 8% while the average for the tracts designated as low, 

moderate, and high is 12%, 15% and 23% respectively.  Compared to the statewide average 

poverty rate of 14% it is simple to see how the Z-score method uses the various data elements to 

categorize the tracts.  For the BIPOC percentage by REII index, the average percentage of the 

population that is BIPOC in all tracts categorized as lowest, low, moderate, and high is 10%, 

16%, 22% and 33% respectively compared to the state average of 20.   
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Table 6.1: Race/Ethnicity & Income Index Measures and Related Metrics Summary 

Data 

Category  Measure 

Race/Ethnicity & Income Index 

Statewide Lowest Low Moderate High 

Socio-

Demographic  

& Population 

% People Living in 

Poverty 8% 12% 15% 23% 14% 

% BIPOC 10% 16% 22% 33% 20% 

Population 1,139,724 1,165,118 774,907 1,002,194 4,081,943 

Pedestrian 

Injury 

Fatal & Severe 

Injury Rate 12.8 15.5 27.0 35.7 21.9 

All Injury Rate 54.4 78.9 129.3 203.8 112.3 

Fatal & Severe 

Injuries 146 181 209 358 894 

All Injuries 620 919 1002 2042 4583 

Average Fatal & 

Severe Injury 0.6  0.8  1.4  1.8  1.1  

Average Pedestrian 

Injury 2.6  3.8  6.5  10.5  5.5  

Travel & 

Built 

Environment 

Arterial VMT 

Density (Millions 

VMT per Sq. Mi.) 493,726 634,285 1,052,054 1,459,501 865,363 

Miles of 45 MPH 

Roadway per 100 

Sq. Mi. 0.52 0.48 0.90 1.05 0.70 

Transit Stops per 

Sq. Mi. 12 18 28 42 24 

% Household 

without Vehicle 3.7% 5.9% 8.2% 12.3% 7.2% 

Walk, Bike and 

Transit Commute 

% 5.8% 9.0% 12.3% 16.3% 10.5% 

 

Pedestrian injury data and data summarizing the travel and built environment of the tracts are 

also summarized in Table 6.1.  Fatal and severe pedestrian injuries, as well as all injuries, are 

included. Even though only 25% of the total state population lives in the tracts designated as 

High in the REII, 40% of the fatal and severe injuries and 45% of the total pedestrian injuries 

occur in those tracts.  These pedestrian injury outcomes are also expressed as a rate normalized 

by the total population in the tract.   These rates show that for both injury categories (fatal & 

severe/ all injuries) rates are significantly higher in Moderate and High REII categories.   

The travel and built environment data summaries shed some light as to why these disparities in 

pedestrian injury outcomes may be occurring.  Arterial vehicle miles traveled (VMT) density and 

miles of roadway with a posted speed limits of 45 miles per hour (MPH) or greater are shown in 

order to describe the vehicle travel exposure that people living and working in these tracts 

experience.  The arterial VMT density is significantly higher in the tracts classified as High in 
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the REII compared to the Lowest and Low REII categories and also higher than the statewide 

average.  The number of miles high speed roadway is also higher in the Moderate and High REII 

tracts compared the Lowest and Low tracts.  Together these measure of VMT and speed suggest 

that tracts designated as Moderate and High in the REII experience more arterial VMT and that 

VMT is typically higher speed compared to tracts in the other REII categories.   

Other ecological studies we reviewed for the literature review confirm that areas with more 

arterial roads, higher speeds, and higher volumes are associated with more and higher severity 

pedestrian crashes. Six studies looked at the miles or proportion of arterial roads. Four found that 

higher proportions of arterials (Wier et al 2009), or more miles of arterial roads (Abdel -Aty et al 

2013; Dumbaugh and Li 2010; Guerra et al 2019), were associated with more pedestrian crashes. 

Two others found that higher proportions of lower speed or local roads were associated with 

fewer pedestrian crashes (Lin et al 2019; Ukkusuri 2012). Five studies looked at average vehicle 

speeds, with four finding that higher average speeds were associated with more pedestrian 

crashes (Chimba et al 2014; DiMaggio 2015; Guerra et al 2019) C and /or increased injury 

severity (Guerra et al 2019; Yu 2015). One looked at maximum speed limit (Dai and Jaworski 

2016) and found it to not be significant. Of 11 studies looking at traffic volumes, such as VMT 

or AADT density, seven found that higher average traffic volumes levels were associated with 

more pedestrian crashes (Cottrill and Thakuriah 2010; DiMaggio 2015; Guerra et al 2019; La 

Scala 2000; Loukaitou-Sideris et al 2007; Mansfield et al 2018; Wier at al 2009). Four studies 

did not find volume to be significant (Dumbaugh and Li 2010; Kim 2019; Yu 2014;Yu 2015). 

The number of transit stops, percent of households without a vehicle, and the percentage of 

workers using walk, bike, and transit to commute to work are summarized by REII in Table 6.1 

to demonstrate that people living and working in these tracts are more exposed to the high 

volume, high speed traffic conditions.  The number of transit stops is nearly double the state 

average in tracts designated as high in the REII, as and nearly four times higher than in tracts 

classified as Lowest in the REII.  Additionally, 16.3% of workers in tracts classified as High in 

the REII commute to work by walking, biking or using transit compared to just 5.8% in the 

lowest category and 10.5% statewide.  Lastly, the percentage of households without a vehicle in 

the High REII category is 12.3% compared to just 3.7% in the lowest category and 7.2% 

statewide.  Vehicle-less households are more likely to use other modes of travel such as walking 

and transit.  Taken together these data summaries demonstrate the likely amount of pedestrian 

exposure in tracts within each of the REII categories.  Tracts categorized as High in the REII 

have higher number of transit stops and workers using either walk, transit or a bike to commute 

meaning they are likely more exposed to vehicle traffic and contributes to higher numbers of 

pedestrian injuries in these tracts.   

A key objective of this research seeks to know if pedestrian injury disparities are growing or 

shrinking.  In order to measure these outcome changes over time, we use the REII approach to 

compare two separate period of data, including the 2008 to 2012 five-year period and the 2014 to 

2018 five-year time period.  Population based injury rates are calculated for each REII category 

the fatal and severe injury rates are shown in Figure 6.2 while the total pedestrian injury rates are 

shown in Figure 6.3.   
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Figure 6.2: Pedestrian fatal & severe injury rate period comparison 

 

Figure 6.3: Pedestrian total injury rate period comparison 
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Figure 6.2 and Figure 6.3 show that for all REII categories, and for both injury severity 

categories, the injury rate has increased over the two time periods.  The rate of increase has not 

been equal across REII categories however, with the fatal and severe injury rate increasing by 

14% in the High REII while the Lowest REII category only increased by 2%.  For the total injury 

rate the tracts categorized as High REII increased by 18% while the Lowest REII tracts only 

increased by 8%.  So even though the pedestrian injury rate grew across the state the increase 

was higher in High REII tracts compared to the Lowest REII tracts.  

The analysis featured in this section informs the analysis in Chapter 7.0 that will use a variety of 

statistical analysis tools to better capture the effects of built environment, traffic exposure, race, 

ethnicity, and income on pedestrian injury outcomes.  The results presented above show that 

tracts with higher concentrations of people of color and low-income people have higher rates of 

pedestrian injuries for all injury severities.  Likely contributors to these disparate outcomes are 

that BIPOC communities and low-income communities have more exposure to high vehicle 

volumes moving at higher speeds.  Based on the REII summaries above, people and workers in 

these High and Moderate REII tracts also travel by foot, transit, and bicycle at a higher rate 

which increases their exposure to the high volume, high speed roads.  The analysis in Section 

Chapter 7.0 analyzes the relationships between the built environment, traffic exposure, race, 

ethnicity, and income to more precisely understand the role these factors play in pedestrian 

injury outcomes.    
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7.0 OREGON EMERGENCY MEDICAL SERVICES 

INFORMATION SYSTEMS (OR-EMSIS) ANALYSIS 

This chapter utilizes traffic crash incident data collected by Emergency Medical System (EMS) 

providers in Oregon to understand pedestrian incidents and the dynamics between home and 

incident location.  Key findings in this chapter include: 

 Based on Oregon EMS traffic incident data, half of pedestrian incidents occurred 

within 1.06 miles from the crash participants home. This result is consistent with past 

findings in Hass et al (2015) and Anderson et al. (2012). 

 Half of pedestrians 15 years of age or younger are involved in a traffic related 

incident within 0.32 miles from their home 

 Half of pedestrians 65 years of age or older are involved in a traffic related incident 

within 0.82 miles from their home 

 Based on the Oregon EMS traffic incident data, 60% of pedestrian incidents occur 

within their home tract (38%) or a neighboring tract (22%). 

 For pedestrians that live in a Census tract with high poverty and concentration of 

BIPOC population, 70% are struck in a tract that is also high poverty and high BIPOC 

concentration.   

These data are reported to a centralized database called Oregon Emergency Medical Service 

Information System (OREMSIS).  These data represent a sample of the crashes since it doesn’t 

represent the universe of crash data in Oregon.  However, since these data include the home 

address of the crash participant they are useful data for answering questions about the distance 

from home that pedestrian injuries occur and the likelihood that a pedestrian injury participant is 

injured in their home tract, a neighboring tract, or a tract more distance from their home. 

7.1 DISTANCE BETWEEN HOME AND INCIDENT LOCATION  

The OR-EMSIS data include 9,278 records that have reliable incident and home location 

information to use in the analysis featured in this chapter.  These include 888 records where the 

traffic incident participant was a pedestrian which comprises 12.3% of the total EMS records.  

These incidents occurred in the years 2017 through 2019.  The distance between the incident and 

the home location are calculated using the Euclidean distance and is presented in miles.  

Incidents from crash participants that lived outside the state are included.   A map of the of the 

incident location, home location, and straight -line distance for the Salem urban area are featured 

in  Figure 7.1 below to show how this calculation process looks spatially.  
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Figure 7.1: Incident and home locations for pedestrian incident participants – Salem, OR 

urban area 

Using these calculated distances for all modes the table below summarizes the distance from that 

incidents occur for each mode included in the dataset.  For pedestrian participants the median 

distance from home is 1.0 miles meaning that half of all pedestrians in these data are injured 1.06 

miles from their home.  This result is similar to what past research has found where one study 

(Haas et al., 2015) found that half of pedestrian injuries occur within 1.1 miles from the victims 

home, while another (Anderson et al., 2012) found that half of pedestrian injuries occur within 1 

mile from home.  Anderson et al. found that for children and the elderly, the injury distance from 

home was even shorter with half the injuries occurring within a half-mile of the victim’s home.  

The distances for the other modes seem reasonable with heavy vehicle (freight) users showing 

the longest distance from home across most summary statistics followed by motorcycle, transit, 

all-terrain vehicle (ATV), and finally vehicle.  For bike participants, half of all incidents 

occurred within 1.7 miles of the participant’s home.   
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Table 7.1: Summary Statistics for Incident Distance from Home by User Type 

User Type Records 

    Distance Summary     

1st Quartile Median 3rd Quartile Mean Max Std. Dev.  

ATV 529 0.51 4.4 20.8 59.0 2429 221 

Bike 741 0.32 1.7 5.7 55.1 2683 275 

Heavy vehicle 42 2.12 20.8 100.3 208.5 2351 520 

Motorcycle 624 1.72 6.3 20.4 43.6 2453 172 

Pedestrian 888 0.12 1.06 4.6 34.5 2710 211 

Transit 43 1.36 5.0 13.2 16.1 187 37 

Vehicle 4541 1.07 3.6 10.5 37.3 2599 194 

 

As was noted in Anderson et al. (2012), the distance from home varies by age of traffic incident 

participant.  The distance between home and incident location by age of incident participant is 

summarized in Table 7.2.  This table shows that for people ages 15 and under, half of all crash 

participants are involved in an incident within 0.3 miles from home while 16-24 year olds are 

higher with median distance of 1.45 miles.  The next age group, 25-64 the median distance is 1.2 

miles and for seniors aged 65 and older 0.8 miles. 

Table 7.2: Summary Statistics for Incident Distance from Home by Age for Pedestrian 

Users 

Age Group Records 

    Distance Summary     

1st Quartile Median 3rd Quartile Mean Max Std. Dev.  

0-15 98 0.03 0.32 2.18 22.1 1643 167 

16-24 151 0.33 1.45 4.10 39.0 2710 263 

25-65 506 0.12 1.18 6.77 43.5 2319 228 

65+ 122 0.06 0.82 2.54 4.1 119 13.7 

Unknown 11 0.00 1.25 3.04 2.6 10.2 3.47 

 

The last summary of the home and incident location distance data is presented in Table 7.3 and 

shows the summary statistics for urban areas that recorded at least 10 participants.  This table 

also includes participants with home locations outside Oregon urban areas and are titled 

‘Rural/Non-Oregon Home’ in the table below.  These records are for Bend has the shortest 

median distance of 0.02 and 3rd quartile distance of 0.90 miles while Salem has the longest 

median distance of 1.52 miles.  The participants living in rural areas have the longest distances 

from home of 3.85 miles with significantly higher 3rd quartile and maximum values of 1,760 

miles.  These longer distance are due to five incident participants that lived outside of Oregon 

with one participant residing as a far as Illinois.  For context, the mean and median land area for 

urban Census tracts is 1.6 and 1.1 square miles respectively.    
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Table 7.3: Summary Statistics for Incident Distance from Home by Urban Area  

Home Urban Area Records 

    Distance Summary     

1st Quartile Median 3rd Quartile Mean Max Std. Dev.  

Albany 12 0.00 0.24 0.60 1.0 7.71 2.19 

Bend 16 0.00 0.02 0.90 1.3 15.5 3.82 

Corvallis 11 0.38 0.99 2.27 7.3 68.1 20.2 

Eugene 19 0.08 1.25 2.84 4.5 48.8 11.1 

Grants Pass 30 0.25 0.46 1.33 1.0 8.03 1.55 

Hermiston 11 0.50 0.93 3.46 5.5 42.7 12.5 

Medford 26 0.00 0.86 2.64 12.2 156 36.2 

Portland 475 0.12 1.10 3.93 4.6 193 15.7 

Redmond 11 0.54 1.29 4.70 4.3 18.1 6.16 

Salem 47 0.31 1.52 5.15 11.6 174 29.8 

Rural/Non-Oregon  96 0.11 3.85 14.9 44.4 1,760  211 

All Pedestrians 888 0.12 1.06 4.6 34.5 2,710 211 

 

7.2 TRACT TO TRACT ANALYSIS - HOME AND INCIDENT 

LOCATION DETAILS 

The ability to know the home and incident location also allows for understanding how often 

people are involved in a crash in their tract in which they reside or a tract that they don’t reside in 

but is nearby.  With half of all pedestrian injuries occurring within 1.0 miles from home it would 

be expected that many injuries happen in a neighbor tract.  The table below shows that for the 

888 pedestrian incident participants, 38% are injured in their home tract and 60% are injured in 

their home tract or a neighboring tract.  The other modes are shown for context and show 

motorcycles and heavy vehicle participants are the least likely EMS incident participants to be in 

their home tract when involved in a crash.  For bicycle incidents, 32% of participants were in 

their home tract when they reported the incident and 53% were injured in their home tract or a 

neighboring tract.    
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Table 7.4: Summary of Tract Location of Incident 

User Type Incident in Home 

Tract 

Incident in Tract 

Neighboring Home 

Tract 

Incident in Home 

Tract or Tract 

Neighboring 

Home Tract 

Total 

Incidents 

Count %  Count %  Count %  

ATV 171 33% 82 16% 172 48% 523 

Bike 239 32% 148 20% 241 53% 738 

Heavy vehicle 9 23% 4 10% 9 33% 40 

Motorcycle 122 20% 121 20% 122 39% 617 

Pedestrian 336 38% 198 22% 350 60% 888 

Transit 16 39% 9 22% 16 58% 41 

Vehicle 1,116 25% 1,112 25% 1,130 50% 4502 

 

The Census tract for the home and incident location is obtained by spatially overlaying the 2010 

Census tract boundaries for Oregon.  In order to highlight how the tracts classified in the REII 

Index form groups of tracts within the same category which then makes people residing in any 

one designation likely to be in a similar index value when involved in an EMS report traffic 

incident.  The table shows that of the 835 pedestrian EMS incidents 318, or 37%. These results 

are similar to those presented in Chapter 4 where ODOT pedestrian injury data was used and 

showed that 40% and 45% of fatal and severe injuries and all pedestrian injuries respectively, 

occur in high poverty, high BIPOC communities.   

The strength of the data summary below is to show what the REII designation is for the home 

and incident tract.  We would expect that because half of pedestrians are injured within 1.0 miles 

of their home and the REII index tracts cluster spatially there would be more similarity between 

home REII and incident REII values.  Table 7.5 shows that the most common home and incident 

tract pair is to live in a home tract with high poverty and BIPOC and to be struck in a tract with 

High REII index value tract with 26% of the total 854 incidents.  In fact, of the 318 incidents in 

tracts classified as High, 223, or 70% had both lived in a home tract that is classified as High and 

were struck in a census tract classified as High by the REII Index.  The next highest home and 

tract combination is Moderate home and Moderate Incident location with 13% of the total 

pedestrian incidents.  For pedestrian incident participants living in tracts classified as Moderate 

Poverty and BIPOC concentration, 22% were involved in an incident in a tract classified as 

High.  

The other categories show a strong tendency toward being struck in a tract that is similarly 

designated as the home tract.  Of the pedestrian incidents in tracts classifies as Lowest (8% 

Poverty & 10% BIPOC), 55% occurred in tracts classified as Lowest while for pedestrian 

incidents in tracts classified as Low (12% Poverty & 16% BIPOC), 56% also live in a tract 

classified as Low.    
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Table 7.5: Summary of REII Index Value of Home and Incident Location  

Race. Ethnicity & Income Index 

Count 

% of Total 

incidents 

% of Home 

Tract Total 

Total for 

REII 

Index  Home Tract Incident Tract 

Lowest 

Lowest 88 10% 55% 

159 
Low 26 3% 16% 

Moderate 19 2% 12% 

High 26 3% 16% 

Low 

Lowest 15 2% 9% 

174 
Low 98 11% 56% 

Moderate 22 3% 13% 

High 39 5% 22% 

Moderate 

Lowest 20 2% 10% 

203 
Low 29 3% 14% 

Moderate 109 13% 54% 

High 45 5% 22% 

High 

Lowest 18 2% 6% 

318 
Low 25 3% 8% 

Moderate 52 6% 16% 

High 223 26% 70% 

 

The chart in Figure 7.2 attempts to represent the frequency of the home and incident tract REII 

pairs.  This figure shows for instance, how many of the 854 EMS pedestrian incidents have 

participants that reside in tracts classified as High (Poverty and BIPOC) and are involved in an 

incident in a tract classified as High.  As described in the table above, 223 pedestrian incidents 

have a participant that resides in a census tract classified as High and are involved in an incident 

where the tract is classified as High.   
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Figure 7.2: Matrix of home and incident location REII index values  

7.3 OR-EMSIS DATA ANALYSIS DISCUSSION 

This chapter is meant to address questions that TAC members have raised about the relationship 

between the home and incident locations of pedestrian injury participants.  These questions 

include: 

 What is the typical distance from home that pedestrian incidents occur? 

 How often are people in the tract in which they reside or a neighboring tract? 
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 How does the race, ethnicity and income composition of their home tract compare 

with race, ethnicity and income composition of the incident tract? 

In summary, based on pedestrian incidents reported to OR-EMSIS database, half of all 

pedestrians are struck within 1.06 miles of their home which is within the distance measures 

reported in the literature.  The tracts level analysis shows that 38% of pedestrians are struck 

within their home Census tract while another 22% are struck in the neighboring Census tract.  

Using the REII index values, this chapter highlighted that for pedestrians struck in high poverty 

tracts with high concentrations of BIPOC, 70% also live in a high poverty, high BIPOC Census 

tract.    
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8.0 URBAN CENSUS TRACT STATISTICAL ANALYSIS  

This section develops statistical models to better understand the association of 

sociodemographic, built environment, and traffic exposure factors with pedestrian injury counts 

at the Census tract level in Oregon.  The analytic approach featured in this chapter uses Census 

tracts as the unit of analysis and measures various built environment and traffic exposure 

measures as independent variables in a statistical model where pedestrian injuries are the 

response variable.  Both rural and urban models were considered but this report only documents 

the results for Census tracts considered urban.  In addition to the built environment and traffic 

exposure variables, various measures of race, ethnicity, disability status, English proficiency, and 

income will be included to determine whether there are measureable effects from these variables 

even when controlling for the other contributing factors.  Two measures of pedestrian injury are 

analyzed including the count of fatal and severe injuries in a tract as well as the total count of 

pedestrian injuries of all severities including fatal, severe, moderate, and minor injuries.   

Key findings in this chapter include: 

 Median income of the Census tract is negatively associated with pedestrian injuries, 

meaning that the lower the tract’s income the higher the number of pedestrian 

injuries.  These results are consistent with findings from Mansfield et al. (2018), Dai 

and Jaworski (2016), DiMaggio (2015), Jermprapai and Srinivasan (2014), and 

Cottrill and Thakuriah (2010). 

 Percent of the tract population that is BIPOC is positively associated with pedestrian 

injuries, meaning that the higher the percentage of the population that is BIPOC the 

higher the number of pedestrian injuries.  These results are consistent with findings 

with findings from Apardian and Smirnov 2020, Lin et al 2019, Guerra et al. (2019), 

Mansfield et al. (2018), Chimba et al. (2014), Abdel-Aty et al(2013), and Loukaitou-

Sideris et al (2007).  

 When disaggregate measures of race and ethnicity were used, variation in the risk 

factors were measured with percent Asian exhibiting a bigger positive effect on 

pedestrian injuries than percent Latinx, albeit with greater range of effect as measured 

in the confidence intervals.  

 Race and ethnicity were less stable for the fatal and severe models but consistent 

predictors of pedestrian in total pedestrian injury models.  

 Arterial vehicle miles traveled density and miles of roadway with a posted speed limit 

of 35 mph or greater are correlated with higher pedestrian injuries.  These results are 

consistent with findings from Abdel -Aty et al (2013), Dumbaugh and Li (2010), 

Guerra et al. (2019).  
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 The percentage of workers using transit and the number of transit stops are both 

correlated with an increase in pedestrian injuries. These results are consistent with 

findings from Chimba et al. (2014), Cottrill and Thakuriah (2010), Lin et al. (2019) 

and Mansfield et al. (2018). 

 Low wage job density is correlated with higher pedestrian injuries but total job 

density was associated with fewer pedestrian injuries.  These results are consistent 

with findings from Guerra et al. (2019), Jermprapai and Srinivasan (2014), 

Loukaitou-Sideris et al (2007) and Wier et al (2009) and Mansfield et al. (2018). 

 Alcohol establishment density was found to be positively associated with an increase 

in pedestrian injury.  These results are consistent with findings from DiMaggio et al. 

(2016), Nesoff et al. (2018), Nesoff et al. (2018). 

 Mixed effects and fixed effects models are evaluated using 10-fold cross validation 

and show mixed effects specifications have higher predictive accuracy.   

8.1 MODEL SPECIFICATION AND VARIABLE SELECTION 

Multiple regression model approaches have been used in past research to assess the relationship 

between pedestrian injury and Census tract characteristics.  This section describes the process 

used to determine the model forms used in this chapter.  Because the pedestrian injury counts are 

overdispersed and zero counts are not excessive, this research utilizes a negative binomial model 

with random effects parameters though tests a fixed-effects form as well.   

Selection of the appropriate model depends on the nature of the data.  Ordinary least squares 

(OLS) regression is appropriate when data are normally distributed but most crash data are not-

normally distributed and typically reflect a Poisson distribution with overdispersion.  

Overdispersion exists when the response variance is larger than the mean.  If overdispersion is 

not properly accounted for standard errors can be deflated and predictors may appear statistically 

significant when in fact they are not significant (Hilbe 2011).  The pedestrian fatal and severe 

injury counts and total pedestrian injury counts data are charted below in Figure 8.1 and Figure 

8.2 in order to visually inspect the distributions of pedestrian injuries.  The charts have two 

panels, one for tracts classified as rural and the second panel are showing tracts classified as 

urban.   
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Figure 8.1: Pedestrian injury rate period comparison 

 

Figure 8.2: Pedestrian injury rate period comparison 
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In addition to visual inspection of the pedestrian injury data, the mean and variance as well as the 

overdispersion parameter are summarized in Table 8.1 below.  The overdispersion parameter is 

calculated using the method developed by Cameron and Trivedi (1990) where the null 

hypothesis of equidispersion is tested in a Poisson model against the alternative of 

overdispersion and/or underdispersion.  Values significantly larger than one are considered 

overdispersed.  The R function dispersiontest from the AER (Kleiber & Zeileis 2008) package 

are used to calculate this quantity and to test for significance at the 0.05 level.  For urban tracts, 

all periods of data for both injury severity categories reveal overdispersion but for rural tracts, 

equidispersion was measured for fatal and severe injuries in the 2008-2012 and 2014-2018 

periods.  This research report only models urban tracts but if rural tract models are estimated 

using these periods of data and injury severity, a Poisson model may be more appropriate than 

the negative binomial model.   

Table 8.1: Pedestrian Injury Variance, Mean and Overdispersion Parameter Measures by 

Period and Urban/Rural Designation 

Urban/Rural 

Tracts Variance Mean 

Overdispersion 

Parameter Severity Period 

Urban 

1.86 1.06 1.19 Fatal & 

Severe 

Pedestrian 

Injury 

2008-2012 

3.00 1.36 1.44 2014-2018 

2.45 1.21 1.37 Pooled 

49.60 6.03 2.96 Total 

Pedestrian 

Injury 

2008-2012 

70.10 7.63 3.32 2014-2018 

60.42 6.83 3.40 Pooled 

Rural 

0.83 0.63 1.02* Fatal & 

Severe 

Pedestrian 

Injury 

2008-2012 

0.83 0.60 1.14* 2014-2018 

0.83 0.62 1.12 Pooled 

5.33 1.84 1.64 Total 

Pedestrian 

Injury 

2008-2012 

6.39 2.01 1.91 2014-2018 

5.86 1.93 1.85 Pooled 

 

Since crashes are rare events another potential issue in crash counts data is an overabundance of 

zero counts in the data.  Negative binomial regression models underperform when the data 

features an excessive number of zeroes in which case a zero-inflated negative binomial should be 

considered.  Dong et al. (2014) suggests that if 65% or more of the data’s observations are 

represented by zeros, then a zero-inflated model should be used.   

Table 8.2 below summarizes the number of tracts that experiences zero pedestrian injuries 

summarized by urban and rural designations as well as by analysis period.  The table shows that 

no analysis period or urban and rural designation meets the 65% threshold for employing a zero 

inflated model.  Because of the overdispersion featured in this data and because there is not an 

overabundance of zeroes in the data, a negative binomial specification will be used in the 

analysis of these data below.   
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Table 8.2: Count of Tracts with Zero Pedestrian Injuries 

Urban/Rural 

Designation 

Analysis 

Period 

Tracts with Zero 

Counts of Injury 

Total 

Tracts 

% of Tracts with Zero 

Counts of Injury 

Fatal & 

Severe 

All 

Injury 

Fatal & 

Severe % 

All Injury 

% 

Rural 
2008-2012 179 101 307 58.3% 32.9% 

2014-2018 181 91 307 59.0% 29.6% 

Urban 
2008-2012 236 43 520 45.4% 8.3% 

2014-2018 223 35 520 42.9% 6.7% 

 

Many crash analyses using count data assume that the parameters have fixed effects and do not 

address unobserved heterogeneity across analysis units by incorporating a random-parameter.  In 

the presence of unobserved heterogeneity, past research suggests using a count model with a 

random parameter to handle the potential bias in fixed-parameter estimates (e.g. Anastasopoulos 

and Mannering, 2009; EI-Basyouny and Sayed, 2009; Anastasopoulos et al., 2012).  Without a 

random parameter, fixed effect parameters may be biased (Amoh-Gyimah et al., 2016; 

Anastasopoulos, 2016), and estimated model coefficients will result in improper inferences.  To 

account for the potential unobserved heterogeneity, a mixed-effects model will be tried along 

with a fixed-effects model.  The specification below also uses Popt as an offset which converts 

the injury counts into population-based rates.  The mixed effect model is described in the 

equation below:  

𝝀𝒕  =  𝒆𝒙𝒑(𝒍𝒏(𝑷𝒐𝒑𝒕)  +  𝜷𝑿𝒕  +  𝜺𝒕  +  𝜽𝒈)  

(8-1) 

Where: 

λt is the expected number of pedestrian injuries in tract t,  

Xt is a vector of explanatory variables,  

β is a vector of model parameters, εt is an error term, 

θg is a random effect for group g. 

Random-effect parameters will include the urban area and the year for models using multiple 

years of data.  In order to measure the performance of model results multiple measures will be 

used including Akaike Information Criterion (AIC), marginal and conditional R2 values, and 

Root Mean Squared Error (RMSE).  The formula for AIC is presented in Equation 2 below:   

𝑨𝑰𝑪 = 𝟐𝒌 − 𝟐𝐥𝐧 (𝑳) 

(8-2) 
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Where:  

k = number of free parameters in the model, 

n = sample size, 

L = maximized value of the likelihood function 

AIC is a common measure of prediction error and lower values indicate a model with a better fit 

and penalizes models with more estimated parameters.  AIC measures are not standardized to 

remove units like more commonly reported coefficient of determination or R2 but are still useful 

metrics to compare models against one another.  In addition to AIC criteria, model selection will 

also evaluate marginal and conditional R2 using the formulation suggested by Nakagawa and 

Schielzeth (2012).  Because the model specifications in this research include both fixed and 

mixed effects both the marginal and conditional R2 will be reported.  Marginal R2 measures the 

variance explained by the fixed effect parameters while the conditional R2 measures the variance 

explained by both the fixed and random effects parameters.  These R2   measures are calculated 

using the tab_model function from sjPlot library in R (Lüdecke D 2020). 

The last performance measure used in model assessment includes RMSE which is a common 

measure deployed in cross validation.  Cross-validation assesses the predictive capability of a 

statistical model by testing the model on an out-of-sample dataset, comparing the estimated 

values to the observed.  RMSE is the standard deviation of the prediction errors (observed 

compared to predicted) and measure how far from the spread out these predictions are compared 

to the observed values.  For this work RMSE is calculated using the rmse function in the Metrics 

(Hammer and Frasco 2018) package and utilizes the equation below:   

𝑹𝑴𝑺𝑬 = √∑
(𝒚̂ 

𝒊
− 𝒚̂𝒊)𝟐

𝒏

𝒏

𝒊=𝟏

 

(8-3) 

These performance measures will be used to determine whether models using different variable 

specifications are improving or degrading the overall model performance.  Over 500 variables 

were constructed for this research, so a stepwise variable selection process was chosen as a way 

to start to narrow down variables to use in selected models.  A forward and backward stepwise 

algorithm was employed (Venables and Ripley 2002) using AIC as the performance measure 

selection criteria.  No algorithm exists in the R statistical computing platform for doing stepwise 

feature selection for generalized linear regression mixed models, so the process was applied 

using a fixed effects negative binomial model specification.  Following variable feature selection 

using the stepwise approach, other variable specifications were tried using various combinations 

of sociodemographic, traffic exposure, and built environment variables. For each new model 

developed, the AIC, R2 and RMSE performance measures were checked to see if overall model 

performance was being impacted.  Additionally, since a primary objective of this research is to 

determine if any effect from income or race and ethnicity remains after controlling for available 
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traffic exposure and built environment factors, some of the latter variables were held in models if 

they mitigated the impact of income, race and ethnicity variables.  Final models were also 

selected based on parsimony aiming to remove variables that are collinear.  All models were fit 

using the glmmTMB (Brooks et al. 2017) function, with results presented as incident rate ratios.   

Incidence Rate ratios (IRR) are used to understand the rate of an outcome (pedestrian injury) of 

an exposed population given exposure to the variable of interest (e.g. sociodemographic, traffic 

exposure, built environment) compared to the rate of outcome for the unexposed population. The 

IRR values can be interpreted using the following guidelines: 

 IRR = 1 Exposure does not affect pedestrian injury outcomes 

 IRR > 1 Exposure associated with higher frequency of pedestrian injury 

 IRR < 1 Exposure associated with lower frequency of pedestrian injury 

In addition to presenting the model results as IRRs this report assist readers in interpreting model 

coefficients by using marginal effects.  Marginal effects summarizes how changes in a variable 

of interest, like income or race, affect the response variable, in this case pedestrian injury, while 

holding other variables at the specific values, typically the mean of the observed data.  This 

report specifically uses the representative values method (RVM) defining the start and end 

values based on observed data ranges for the variable of interest (Mize et al 2019).  This method 

is formulated using the following equation: 

𝑹𝑽𝑴𝒙𝒌 =  𝜼(𝒙𝒌 = 𝒆𝒏𝒅, 𝒙−𝒌 = 𝒙∗) − 𝜼(𝒙𝒌 = 𝒔𝒕𝒂𝒓𝒕, 𝒙−𝒌 = 𝒙∗)  

(8-4) 

Adjusted risk ratios (ARR) can be derived from the models above by predicting injury outcomes 

using marginal effects that include specific exposures and comparing to marginal effects without 

that exposure.  ARR is the ratio of the average predicted risk conditional on all observations 

being exposed, to the average risk conditional on all observations being unexposed to the 

covariate (Kleinman and Norton 2009).  This calculation can be formalized as the following: 

𝑨𝑹𝑹 =  

𝟏
𝒏
∑ 𝒓𝒊𝒔𝒌𝒊(𝑿𝒊|𝒂𝒔 𝒊𝒇 𝒆𝒙𝒑𝒐𝒔𝒆𝒅)
𝑵
𝒊=𝟏

𝟏
𝒏
∑ 𝒓𝒊𝒔𝒌𝒊(𝑿𝒊|𝒂𝒔 𝒊𝒇 𝒖𝒏𝒆𝒙𝒑𝒐𝒔𝒆𝒅)
𝑵
𝒊=𝟏

 

(8-5) 

N is the risk for individual i is the probability that the outcome variable equals one, conditional 

on the covariate X.  Using measures derived from the RVM and ARR methods can help to 

summarize the modeling result in more intuitive ways.  Following the presentation of modeling 

IRR in the modeling results section, marginal effects and subsequent adjusted risk ratios will be 

presented for select sociodemographic variables to highlight the role these variables play in 

pedestrian injury outcomes all else being equal. 
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8.2 VARIABLE EXPLORATION 

A primary objective of this research is to understand and isolate the potential role of race and 

income as factors in predicting pedestrian injury outcomes when taking into account built 

environment and exposure variables.  The relationship between the factors used in the statistical 

analysis are visualized below in order to show the strength and direction of correlation between 

relevant variables using the calculated Pearson correlation coefficient.  Pearson’s correlation is 

one of the oldest and most common measures to describe the linear dependence between two 

variables (Pearson 1901) and range from -1 to 1 with negative values indicating a negative 

correlation and positive values indicating a positive correlation.  A value of -1 or 1 indicate a 

perfect correlation while 0 represents no relationship.  Pearson’s correlation is denoted as r and is 

given by the equation below (Mukaka 2012).  Variable cross-correlation will be explored for 

data within tracts classified as urban using this measure.   

𝒓 =  
∑ (𝒙𝒊 − 𝒙)(𝒚̂𝒊 − 𝒚̂)𝒏
𝒊=𝒊

√[∑ (𝒙𝒊 − �̅�𝒏
𝒊=𝒊 )𝟐] [∑ 𝒚̂ − �̅�̂𝒏

𝒊=𝒊 )𝟐]
 

(8-6) 

8.3 URBAN AREA TRACTS VARIABLE EXPLORATION  

This section will explore the cross-correlations of each variable used in the modeling section 

below in order to demonstrate the various interactions between each factor. Figure 8.3 indicates 

Pearson correlation coefficient values using both the numeric values and color to aid in 

visualizing the myriad relationships between the pedestrian injury counts and other possible 

covariates.  The color purple indicates a positive correlation with darker colors indicating 

stronger positive relationships.  Similarly, the color orange indicates a negative correlation with 

darker colors indicating a stronger negative relationship.  As mentioned above, two measures of 

pedestrian injury will be analyzed and are denoted as Ped_KA for fatal and severe pedestrian 

injuries and  Ped_KABC for all pedestrian injuries including fatal, severe, moderate, and minor.   

The figure shows how all pedestrian injuries (Ped_KABC) are correlated with various 

sociodemographic, built environment, and traffic exposure measures.  The top two rows 

(Ped_KABC & Ped_KA) in Figure 8.3 allow readers to assess the relationship between pedestrian 

injuries and included variables.   

 For race and ethnicity variables there is a measured positive correlation with 

pedestrian injuries though some race categories like percentage of the population in a 

tract that are Asian (Asian_Prop) is relatively weak.   

 Percentage of households that have people with limited English proficiency 

(Limited_English_Prop) living in them or disabled persons (Disability_Hh_Prop) are 

positively correlated pedestrian injuries.   

 Income is negatively correlated with pedestrian injuries.   
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 Motor vehicle exposure variables are almost all positively associated with pedestrian 

injuries including vehicle miles traveled (VMT) on all arterial (Vmt_All_Arterial) and 

VMT on major arterials (Vmt_Major_Arterial).  Three of the four speed variables are 

positively correlated with pedestrian injuries, though the variable representing the 

miles of non-interstate roadway with posted speed limits of 45 miles per hour (mph) 

or more is negatively correlated with pedestrian injuries.   

 Pedestrian exposure measures include the number of transit stops in the tract 

(Mean_Transit_Stops), number of households and percentage of households in a tract 

with zero vehicles (Vehicle_0 & Vehicle_0_Prop), and percentage of tract workers 

using walking or transit to get to work (Jtw_Walk_Prop & Jtw_Transit_Prop).  These 

measures are all positively correlated with pedestrian injuries, and some are very 

strongly correlated, such as zero vehicle households.   

 Built environment variables including the number of jobs (C000_WAC) and the 

number of alcohol establishments (Alc_Site_Count) are positively correlated with 

pedestrian injuries.  Measures of pedestrian infrastructure such as crossings and 

sidewalks are not available for the whole state but this research does have access to 

measures of sidewalk quality and completeness on ODOT’s system.  Miles of 

sidewalk on ODOT’s system that are poor quality (Sidewalk_Poor) and miles of 

sidewalk on ODOT’s system that have been determined to be substandard 

(Sidewalk_Substandard) are both positively correlated with pedestrian injuries though 

poor condition miles are very weakly associated.  Total miles of sidewalk 

(Sidewalk_Quality_Total) are also positively correlated with pedestrian injuries 

though it is likely that this variable is a proxy for pedestrian activity, assuming 

sidewalk presence elicits more pedestrian activity.  

 Lastly, the change in year from an older period of data representing 2008-2012 

compared to a more contemporary period of data representing 2014-2018 is also 

positively correlated with pedestrian injuries revealing the overall growth in 

pedestrian injuries over time.   

Figure 8.3 shows the correlation between pedestrian injuries and the sociodemographic, traffic 

exposure and traffic exposure variables in order to explore the relative associations between 

injuries and other variables, but also to show the interconnections between the covariates 

themselves.  For instance the figure reveals that median income and zero vehicle ownership and 

households with disabled people are all collinear.  Additionally the correlation between median 

income and some BIPOC populations can be seen, which helps to contextualize the relationship 

between these variables.  For reasons documented in the literature review, BIPOC communities 

are more likely to be lower income and lower income tracts are correlated with many of the 

features that are associated with pedestrian injuries.  The next section will apply statistical 

analysis to determine the relative risk associated with different sociodemographic, traffic 

exposure, and built environment and pedestrian injuries.
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Figure 8.3: Pearson correlation coefficient for urban tracts pooled data  
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8.4 URBAN AREA STATISTICAL ANALSIS 

This section presents statistical models using data for urban Census tracts with the aim of 

measuring the relative risk of pedestrian injury of tract level measures of sociodemographic, 

traffic exposure, and built environment factors.  Three periods of data are examined including an 

older period (2008 to 2012), a more contemporary period (2014 to 2018), and a pooled data set 

that puts the older and more contemporary data together into a pooled dataset.  Models were 

developed for two pedestrian injury categories including fatal and severe injuries as well as all 

(total) pedestrian injuries.  Due to the structure of the pedestrian injury data, a negative binomial 

regression model was selected as the preferred model type.  This research tried both a fixed 

effect model and mixed effect model with random parameter for the urban area and for the 

pooled data, a random parameter for the year.  Performance metrics were compared across 

different model specifications in order to retain a model that performs well while also providing 

information on the relative risk associated with various sociodemographic factors.  Final models 

developed for using the pooled data were applied to the older period and contemporary periods 

of data for comparison.  The results of select models for all periods are presented in Appendix A-

3 and A-4 for fatal and severe injury and total injury respectively.   

8.4.1 Urban Area Pooled Data Fatal and Severe Injury Models 

The model results in Figure 8.4 below summarize models estimating fatal and severe pedestrian 

injuries in urban areas using the pooled data set.  Results are expressed as incident rate ratios 

(IRRs) which can be interpreted as the percentage increase in injury counts given a one unit 

change in predictor variable.  Examples are given along with the description of the results below.  

A subset of all the models run are shown in  

Figure 8.4, and includes for the mixed effect models and select fixed effects models. Other 

models tested are included in the appendix.  Models A through K are specified using a mixed 

model with urban area and year as random parameter.  Model L is a fixed effects model with no 

random parameter and estimated to understand the importance of using the random parameter 

specification.   

8.4.1.1 Results for Sociodemographic Variables  

IRR results for income, race and ethnicity are generally stable in terms of direction of 

effect. Based on these models: 

 For income, the models show an increase of 1.6% to 2.0% in fatal and severe 

pedestrian injuries for every $1,000 decrease in median income of a tract, all else 

being equal (IRRs ranging from 0.984 (p < 0.05) to 0.980 (p < 0.05)).   

 The role of race and ethnicity, the models show an increase in pedestrian injury of 

91%, 95%, 120% for every percent increase in the tract’s population that is 

BIPOC (IRRs range from of 1.91 (p < 0.10) to 2.2 (p < 0.05) in the mixed models 

and 2.7 (p < 0.05) in the fixed effects model).  The relationship between the 

percentage of the tract that is BIPOC and the expected number of a pedestrian 
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injuries in a tract is significant at the 0.05 level in two models and significant at 

the 0.10 level in two models.   

 The percentage of the population that is Asian and Latinx in a tract is also 

correlated to an increase in the number of a pedestrian injuries in a tract.  IRR for 

percent of the tract that is Asian ranges from 4.9 (p < 0.05) to 5.3 (p < 0.05).  IRR 

for percent of the tract that is Latinx around 1.9 (p < 0.10) for both models.  The 

variable for proportion of the tract population that is Black was not significantly 

correlated with pedestrian injuries in any of the models presented.  Discussion of 

these outcomes is featured in the discussion section below.   

 The percentage of households with limited English proficient speakers was 

included in models B and C.  Pedestrian injuries increase as the percentage of the 

households in the tract that have limited English proficiency increases.  The IRR 

for this variable ranges from 5.4 (p < 0.05) to 6.3 (p < 0.05).  Lastly, percentage 

of households in the tract with a disabled person was included in models B, H and 

I (see appendix) with IRR values of 1.9 (p > 0.10) 2.3 (p < 0.10) and 1.9 (p > 

0.10).   

8.4.1.2 Results for Traffic Exposure Variables 

Results for traffic exposure variables show that vehicle volume and speed are important 

contributors to pedestrian crash outcomes.  Based on these models: 

 An increase in VMT on major arterials is associated with an increase in the 

number of fatal and severe pedestrian injuries of 8.0% to 9.0% for every 1 million 

increase in VMT, all else being equal (IRRs of 1.08 to 1.09).  

 Miles of non-interstate 45-plus mph roadways in a tract decrease the pedestrian 

injuries in urban tracts which is not an expected outcome with IRRs from of 0.23 

(p < 0.05) to 0.311 (p < 0.05).  Discussion of the possible reasons for this 

measured impact are featured below but might be because these facilities are in 

less populated parts of urban areas where less pedestrian activity is occurring.   

 Miles of non-interstate roads with 35-plus roadway was shown to increase the 

pedestrian injuries with IRRs ranging from 3.8 (p < 0.05) to 4.1 (p < 0.05).   

 An increase in the average width of arterials was shown to increase the number of 

pedestrian fatal and severe injuries, though this variable was only significant at 

the 0.10 level, indicating some uncertainty about the effect.  This variable is 

difficult to properly operationalize at the zonal level which might be why the 

greater uncertainty for this variable exists.  

Pedestrian traffic exposure cannot be measured directly because a systematic accounting 

of pedestrian traffic does not exist as it does for vehicle traffic; therefore, this research 

relies on measures that are available.   
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 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian 

activity and was associated with 3% to 5% increase in pedestrian fatal and severe 

injuries for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.03 (p < 

0.05) to 1.05 (p < 0.05)).   

 The percentage of the tract’s workers that commute by walking is significantly 

correlated to pedestrian injuries but the direction is unexpected revealing a 

decrease in pedestrian fatal and severe injury.   

 The percentage of workers that take transit to work is associated with an increase 

in the number of expected pedestrian injuries by a factor of 9.6 to 17.8 times for 

every percent increase the proportion of workers that use transit to get to work 

(IRRs ranging from 10.6 (p < 0.05) to 18.8 (p < 0.05)).   

 The relationship between pedestrian injury and transit can also be observed with 

the IRR for transit stop count variable, showing an increase of 10 transit stops in a 

tract increases the frequency of a pedestrian injuries by 0.7% to 0.8% (very stable 

IRRs ranging from 1.006 (p < 0.05) to 1.008 (p < 0.05)).   

 The last measure of pedestrian exposure are the percentage of households with 

zero vehicles.  It is assumed that households that do not own vehicles are more 

likely to walk to meet daily needs and therefore tracts with more zero vehicle 

households will have more people walking and more pedestrian activity.  The 

model results presented in Figure 8.4 show that the percentage of all households 

with zero vehicles is not significant at the 0.05 or 0.10 levels, though was 

positively correlated to pedestrian injuries.  The lack of statistical significance is 

likely due to the models accounting for likely pedestrian exposure through 

measures like income, transit stops and job density, making this variable a less 

useful proxy for pedestrian activity.   

8.4.1.3 Results for Built Environment 

Statewide data on pedestrian specific infrastructure such as sidewalks and crossing does 

not exists nor does a comprehensive database of other important features like streetlight 

locations.  However, ODOT data on the location and quality of sidewalks on ODOT 

owned facilities, as well as statewide data on employment and the location of businesses 

that sell alcohol was utilized.  These variables are considered built environment variables 

though some of the effects detected could be proxy measures for pedestrian traffic 

exposure since other research as documented the correlation of pedestrian traffic counts 

and employment.  Two measures of sidewalk quality are used, including miles of 

sidewalk (on the ODOT system) that are rated as poor and miles of sidewalk that do not 

meet ODOT’s standard.  

 The number of miles of sidewalk rated poor was not significantly associated with 

pedestrian injury outcome but the number of miles of sidewalk rated substandard 



76 

 

were associated with a 3.1% and 3.5% (IRR 1.03 and 1.034, p < 0.05) increase in 

pedestrian fatal and severe injuries in that tract.   

 Intersection density was also included as a control variable but was not significant 

at the 0.05 level so the actual effect is uncertain.   

 Similarly, the measure of low wage jobs was helpful for a control variable but 

was not statistically significant at the 0.05 level for the fatal and severe injury 

models.   

 Total jobs per square mile was associated with fewer pedestrian injuries all else 

being equal with IRRs around 0.96 (p < 0.05).   

 Lastly, the number of alcohol establishments per square mile was associated with 

an increase in pedestrian injuries with IRRs stable across all models.  For every 

10 alcohol establishments per square miles fatal and severe pedestrian injuries 

increase by 1% all else being equal.   
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Figure 8.4: Urban area pooled data fatal and severe injury models results 
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8.4.1.4 Urban Area and Year Random Effects for Fatal and Severe Injury Models 

Models A through J shown in Figure 8.4 (and A-1 appendix) use mixed model 

specification meaning they include a random parameter for the urban area and year to 

control for unobserved heterogeneity, or unmeasured differences, measured by these 

terms and not directly accounted for in the fixed effect terms.  For the urban area random 

parameter the effect is likely measuring differences for specific urban areas that are not 

observed in the available covariates.  These can be thought of as a measure of how much 

the urban area differs from the ‘average’ urban area in Oregon, considering all the fixed 

effects in the model (Brooks et al., 2017).  The effect of specific urban areas can provide 

some information in addition to the fixed effect covariates described above, that could be 

useful for practioners above and beyond the fixed effects parameters. This section 

summarizes the conditional modes, or the difference between the statewide mean 

estimated response for a given set of fixed-effect quantities and the estimated response 

for each urban area.   

Figure 8.5 shows the conditional modes for each urban area with negative values 

indicating less fatal and severe pedestrian injuries compared to the state average and 

controlling for all the fixed effects.  Eugene, Klamath Falls-Altamount, Medford, and The 

Dalles have relatively large negative conditional mode values compared to the statewide 

average.  This can be interpreted as some unmeasured direct effect in those urban areas 

that reduce pedestrian injuries such as less pedestrian activity, safety in numbers (so 

perhaps more pedestrian activity), more pedestrian safety features, or some other 

protective feature that the model did not include directly.  It has been suggested by 

members of the TAC that these urban areas have extensive off-street path systems which 

might be playing into the effect of these conditional modes.  Conversely, urban areas with 

relatively large conditional modes compared to the mean include Astoria, Lincoln City, 

Roseburg and Sandy.  Similar to the interpretation of the potential protective effects in 

the negative conditional mode values these urban area might possess features that were 

not measured in the models directly that are leading to more pedestrian injuries.   
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Figure 8.5: Conditional modes for urban area random effects (Model D and G)  

8.4.1.5 Cross Validation Results and Model Performance Measures 

In this section model results are compared based on cross-validation results and other 

model performance measures including AIC and marginal and conditional R2.  All 

models presented in  

Figure 8.4 perform similarly though some differences emerge.  Larger differences exist 

between the mixed models and the fixed effects models which is explored in this section.  

The models constructed and presented in  

Figure 8.4 include AIC, marginal and conditional R2 values to help understand how 

different specifications improve the quality of the model overall.  In addition to these 

measures is the R2 and RMSE based on 10-fold cross validation.  These results highlight 

the models with the best predictive capability by partitioning the data into 10 groups and 

using 90% of the data to estimate a model and then to compare with the remaining 10% 

of data and assessing how well each model does at predicting fatal and severe pedestrian 

injuries at the tract level.  Two types of specifications are used in the cross-validation 

including mixed models where random parameters for urban area and year are included 

but also fixed effects models where random parameters are not used.  The objective of 
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showing cross validation results for both fixed and mixed effects models is to highlight 

the importance of the mixed effects approach especially as it relates to predictive 

accuracy of the different models.  Table 8.3 shows how RMSE is lower for all models 

when specifying a mixed effects model demonstrating the importance of this type of 

specification in terms of prediction.   

Table 8.3: Cross Validation Results for Urban Tracts Pooled Data Models 

Model 
RMSE R2 

Fixed Mixed Fixed Mixed 

Pool - A 1.43 1.36 35.6% 41.0% 

Pool - B 1.41 1.35 38.7% 43.2% 

Pool - C 1.40 1.34 38.6% 43.1% 

Pool - D 1.44 1.38 34.8% 40.1% 

Pool - E 1.42 1.37 36.8% 41.4% 

Pool - F 1.43 1.37 35.7% 41.1% 

Pool - G 1.42 1.34 37.4% 43.3% 

Pool - H 1.40 1.35 39.1% 42.9% 

Pool - I 1.43 1.37 37.3% 41.9% 

Pool - J 1.41 1.38 36.7% 39.9% 

Pool - K 1.41 1.40 37.5% 38.4% 

 

Based on the performance measures in this table the best model for predictive accuracy is 

Model G and followed closely by models B and C.  Due to the random splitting of 

training and testing data in the cross-validation process, it is expected these performance 

values have some perturbation so cross-validation results that are close are probably not 

meaningfully different.  In tests for models with BIPOC race variable Model G appears to 

be preferred with the highest R2 values and one of the lowest RMSE values.  In fact the 

model with the highest R2 is Model G of all the models tested.  Along with the cross-

validation results, review of the other model performance measures including AIC and 

marginal and conditional R2 (0.359/0.419) reveal Model G performs relatively well and 

will be retained as one of the selected model.  Based on model performance and the 

desire to make inferences for disaggregate race variables, Model A and Model F will also 

be used for marginal effects and adjusted relative risk summaries below to evaluate the 

role the disaggregated race categories.  These models performed well in the cross-

validation tests too with R2 values for Model A and Model F resulting in 41% and 41.1% 

respectively.  Model A’s marginal R2 (0.345) values was marginally lower than Model G 

though it’s conditional R2 (0.422) was a bit higher.  Model F’s marginal R2 (0.356) values 

was marginally lower than Model G though it’s conditional R2 (0.419) was the same as 

the Model G.  Based on these performance results Models F, D, and G will be retained 

for marginal effect and adjusted relative risk summaries below. 
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8.4.1.6 Marginal Effects Tests for Select Urban Tracts Pooled Data Model 

Marginal effects tests are partial derivatives of statistical models estimated above and 

allow for simpler interpretation of model outputs by holding all variables in the model 

constant at the observed mean while varying the covariate(s) of interest in order to see 

how the response variable changes.  This is done below in this section for race, ethnicity 

and income variables to show the relative impact of changes in these variables based on 

observed ranges of those variables in Oregon.  Marginal effects tests are also presented in 

this section for other select covariates while others are presented in the Appendix.   

Using the selected Model D based on cross validation results but also Model G as the 

BIPOC variable was significant at the 0.05 level, marginal effects and adjusted relative 

risk are presented in Figure 8.6.  All covariates are held at the mean values based on the 

observed data while the median income is varied according to the range of observed 

values.  The marginal effects (top panel) show how many fatal and severe pedestrian 

injuries are expected in a tract based on the median income of the tract all else being 

equal.  Figure 8.6 shows that adjusted relative risk decreases by about 50% if the tract 

exhibits the state median income (~$60,000) and declines by nearly 94% in the highest 

income tracts.  In fact, in the seven urban tracts (~37,000 people) in Oregon where the 

median income is greater than $150,000 there was only one severe injury in 10 years 

while in tracts with less than $25,000 (~124,000 people) there were 50 fatal and severe 

injuries during the same time period.  There does not seem to be a significant difference 

between the two models based on these tests.  These figures highlight the clear 

relationship between pedestrian fatal and severe injuries and a tract’s median income 

even considering the confidence intervals. 

 

Figure 8.6: Marginal effects and adjusted relative risk for median income (Urban tracts 

using Model D & G)  
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The next set of marginal effects and adjusted relative risk results are presented in Figure 

8.7.  This figure shows how the percentage of the tract’s population that is BIPOC effects 

pedestrian injury outcomes.  The IRR in models D and G were 1.91 and 1.95 respectively 

though the variables were not significant at the 0.05 level meaning the level of precision 

for the effect is much larger.  This lack of precision can be seen in Figure 8.7 the lower 

and upper limits of the marginal effects and adjusted relative risk are much wider than 

compared to the results presented in the median income.  Though the precision of the 

estimate is lower, the effect of BIPOC variable can be observed where adjusted relative 

risk increases by about 15% in tracts with the state average percent of tract population 

that is BIPOC (22%) with tracts in the upper range of BIPOC % exhibiting up to 45% to 

55% more risk than tracts with no BIPOC communities, all else being equal.   

 

Figure 8.7: Marginal effects and adjusted relative risk for percentage of tract’s population 

that is BIPOC (Urban tracts using Model D & G)  

The next set of marginal effects and adjusted relative risk measures are presented in 

Figure 8.8 include the estimated effect of the percentage of the population that is Asian 
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and Latinx based on Model F results. The estimated IRRs for percentage Asian and 

percentage Latinx from Model F are 5.3 (p < 0.05) and 1.9 (p < 0.10) respectively.  

Because the variables for percentage Black was not significant at the 0.05 level, this 

parameter is not included.  The parameter estimates for percentage Latino are less certain 

because the estimate is just over the 0.05 p-value threshold which can be observed in the 

confidence intervals which have considerable spread.  That said, the increase in the 

percentage of the tract’s population that is Asian or Latinx appears to increase relative 

risk even considering the uncertainty. 

 

Figure 8.8: Marginal effects and adjusted relative risk for percentage of tract’s population 

that is Asian and Latinx (Urban tracts using Model F)  

8.4.1.7 Fatal and Severe Pedestrian Injury Models Discussion 

The section above details the results of various statistical models attempting to 

understand the effects of sociodemographic, traffic exposure, and built environmental 

factors on fatal and severe pedestrian injury outcomes at the tract level using an 

ecological analysis approach.  Even after controlling for traffic exposure and built 

environmental factors from available data, income and race measures are positively 

correlated with pedestrian injuries.  Income is a very stable measure varying minimally in 

the size of the effect from model to model with relatively precise confidence intervals.  

The impact of the percent BIPOC variable is less certain but models above show a 

significant effect and correlation with pedestrian fatal and sever injuries.  Similarly, for 

disaggregate race variables percent Asian and percent Latinx are associated with more 

fatal and severe pedestrian injuries.  Percent of the tracts population that is Black is not 

significantly associated with pedestrian injuries as mentioned above, potentially because 
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of small numbers issues since the total number of Black people in Oregon is very small, 

just around 70,000 people (ACS 2014 – 2018 sample) which is just 2.6% of the urban 

population in Oregon.  Based on cross validation results the mixed models appear to 

outperform the fixed effects models.   

8.4.2 Urban Area Pooled Data All Injury Models 

While Section 7.4.2 focuses on severe and fatal injuries, this section provides a comparable 

analysis but for all pedestrian injuries (which includes fatal and severe injuries). The model 

results featured in  

Figure 8.10 summarize models estimating total pedestrian injuries (all severities) in urban areas 

using the pooled data set.  Results in the figure are expressed as incident rate ratios (IRRs) which 

can be interpreted as the percentage increase in injury counts given a one unit change in predictor 

variable.  Examples will be given along with the description of the results below.   

Figure 8.10 shows a subset of models with the appendix featuring other models that were tested.  

The below figure includes results for the mixed and select fixed effects models.  Models A 

through I are specified using a mixed model with urban area and year as random parameter.  

Model K are fixed effects models with no random parameter and estimated to understand the 

importance of using the random parameter specification. 

8.4.2.1 Results for Socioeconomic Variables  

IRR results for income, race and ethnicity are generally stable in terms of direction of 

effect. 

 For income, the models show an increase of 1.5% to 1.2% in total pedestrian 

injury for every $1,000 decrease in median income of a tract all else being equal 

(IRRs ranging from 0.985 (p < 0.05) to 0.988 (p < 0.05)).   

 The role of race and ethnicity variables varies by model with an increase in 

pedestrian injury of 70%, 100%, 100%, respectively, for every percent increase in 

the tracts population that is BIPOC the percentage of the tract that is BIPOC 

(significant at the 0.05 level all the models tested, with IRRs of 1.7 (p < 0.05) to 

2.0 (p < 0.05) in the mixed models and 2.0 (p < 0.05) in the fixed effects). 

 The percentage of the population that is Asian and Latinx in a tract is also 

correlated to an increase in the number of a pedestrian injuries in a tract.  IRR for 

percent of the tract that is Asian ranges from 2.9 (p < 0.05) to 3.5 (p < 0.05).  IRR 

for percent of the tract that is Latinx ranges from 2.0 (p < 0.05) to 2.1 (p < 0.05).  

The variable for proportion of the tract population that is Black was not 

significantly correlated with pedestrian injuries in any of the models presented.  

Discussion of this outcomes is featured in the discussion section below.  

 The percentage of households with limited English proficient speakers correlates 

to an increase in pedestrian injuries as the percentage of the households in the 
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tract that have limited English proficiency increases.  The IRR for this variable 

ranges from 3.2 (p < 0.05) to 3.7 (p < 0.05).   

 Lastly, percentage of households in the tract with a person with a disability was 

included in models B and I with IRR values of 2.1 (p > 0.05). 

8.4.2.2 Results for Traffic Exposure Variables 

Results for traffic exposure variables show that vehicle volume and speed are important 

contributors to pedestrian crash outcomes.   

 VMT on major arterials increase the number of pedestrian injuries.  For every 

million VMT on major arterials pedestrian injuries increases by 9.0% to 9.7%, all 

else being equal.   

 Miles of non-interstate 45-plus mph roadways in a tract decrease the pedestrian 

injuries in urban tracts with IRR range of 0.21 (p < 0.05) to 0.25 (p < 0.05).   

 Miles of non-interstate roads with 35-plus roadway was shown to increase the 

pedestrian injuries with a stable IRR of 1.5 (p < 0.05).   

 An increase in the average width of arterials was shown to increase the number of 

pedestrian fatal and severe injuries, though this variable was only significant at 

the 0.10 level in one of the mixed effects model and was also significant in the 

fixed effect model.   

As mentioned previously, pedestrian traffic exposure cannot be measured directly 

because a systematic accounting of pedestrian traffic does not exist and instead some 

proxies for pedestrian activity are used.   

 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian 

activity and was shown to increase pedestrian injuries by roughly 2% increase for 

an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.017 (p < 0.05) to 

1.025 (p < 0.05)).   

 The percentage of workers that walk to work is significantly correlated to 

pedestrian injuries.  The direction of effect shows that this variable is associated 

with more pedestrian injuries as would be expected but is the opposite of the 

effect found in the fatal and sever injury models above.  Some discussion of the 

potential reasons for this is result is offered below.   

 The variable for the percentage of workers that take transit to work is a significant 

predictor of pedestrian injury with IRRs ranging from 3.4 (p < 0.05) to 7.0 (p < 

0.05).   

 The relationship between pedestrian injury and transit is also measured by using 

the transit stop count variable with IRRs ranging from 1.008 (p < 0.05) to 1.010 
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(p < 0.05).  These IRRs reveal that an increase of 10 transit stops in a tract 

increases the frequency of a pedestrian injuries by 0.8% to 1.0%.   

 The model results show that the percentage of all households with zero vehicles 

increases the expected number of pedestrian injuries with IRRs ranging from 2.4 

(p < 0.10) to 2.5 (p < 0.10).   

8.4.2.3 Results for Built Environment 

As mentioned above this research lacks data on some important build environmental 

variables such as sidewalks, pedestrian crossings, and street lighting for the entire 

transportation system in Oregon.  However this research has access to measures of 

sidewalk miles and quality on the ODOT system as well as measures of jobs and alcohol 

establishment location.  Miles of sidewalk on the ODOT system is associated with an 

increase in pedestrian crash injury, likely because sidewalks are where pedestrians are 

using the system so more sidewalks is likely to equal more pedestrian activity, all else 

being equal.  However, because this particular measure of sidewalks is only for the 

ODOT system this variable might be picking up an effect of some other feature of the 

ODOT system that we do not have a direct measure for.  Miles of sidewalk rated as 

substandard and the percentage of all sidewalks (on ODOT’s system) rated as poor were 

tested with the former showing a statistically significant increase in the frequency of 

pedestrian injuries while the latter was not statistically significant.  The sidewalks rated 

substandard variable was dropped in favor of total sidewalk miles (on ODOT system) 

starting in Models D since the limited coverage of these data means the former variable 

may be providing biased inferences.   

Many variables for jobs were tested in models with the theory that job locations would be 

proxies for built environments where pedestrians used the system.  

 Total job density was associated with a decrease in pedestrian injury with IRRs 

ranging from 0.950 (p < 0.05) to 0.953 (p < 0.05).   

 The number of low wage workers ($1,250 a month of less) was correlated to an 

increase in pedestrian injuries with IRRs ranging from 1.29 (p < 0.05) to 1.34 (p < 

0.05).  This finding indicates that in addition to home location of low income 

people, work location should also be considered as a place where pedestrian and 

vehicle conflicts occur.   

Lastly, alcohol establishment density is associated with an increase in pedestrian injuries 

with a stable IRR of 1.001.   

8.4.2.4 Urban Area and Year Random Effects for All Injury Models 

As in the fatal and severe injury models, the total pedestrian injury Models A through J 

shown in Figure 8.8 (and appendix) use mixed model specification, meaning they include 

a random parameter for the urban area and year to control for unobserved heterogeneity, 

or unmeasured differences, measured by these terms.  For the urban area random 
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parameter, the effect is likely measuring differences for specific urban areas that are not 

observed in the available covariates.  These can be thought of as a measure of how much 

the urban area differs from the ‘average’ urban area in Oregon, considering all the fixed 

effects in the model (Brooks et al. (2017).  The effect of specific urban areas can provide 

some information in addition to the fixed effect covariates described above, that could be 

useful for practioners. This section summarizes the conditional modes, or the difference 

between the statewide mean estimated response for a given set of fixed-effect quantities 

and the estimated response for each urban area.   

Figure 8.8 shows the conditional modes for each urban area with negative values 

indicating fewer total injuries compared to the state average and controlling for all the 

fixed effects.  Eugene, Corvallis, La Grande, Klamath Falls-Altamont, and Newberg have 

relatively large negative conditional mode values compared to the statewide average.  

This can be interpreted as some unmeasured direct effect of those urban areas that is 

reducing pedestrian injuries, such as less pedestrian activity, safety in numbers (so 

perhaps more pedestrian activity), more pedestrian safety features, or some other 

protective feature that the model did not include directly.  All of these urban areas have 

universities or colleges, and there may be something about the student population that is 

affecting the fixed effects portion of the models.  Urban areas with relatively large 

conditional modes compared to the mean include Astoria, Grants Pass, Ontario, and 

Sandy.  Similar to the interpretation of the potential protective effects in the negative 

conditional mode values, these urban area might possess features that are not measured in 

the models that are leading to more pedestrian injuries.   
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Figure 8.9: Urban tracts pooled tract all pedestrian injury models  
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Figure 8.10: Urban tracts pooled tract all pedestrian injury models  
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8.4.2.5 Cross Validation Results and Model Selection 

The models constructed and presented in Figure 8.10 include AIC, marginal and 

conditional R2 values to help understand how different specifications improve the quality 

of the model overall.  In addition to these measures is the RMSE based on 10-fold cross-

validation.  R2 values are also presented for additional model evaluation measures.  These 

results highlight the models with the best predictive capability by partitioning the data 

into 10 groups and using 90% of the data to estimate a model and then to compare with 

the remaining 10% of data and assessing how well each model does at predicting total 

pedestrian injuries at the tract level.  Two types of specifications are used in the cross-

validation including mixed models where random parameters for urban area and year are 

included but also fixed effects models where random parameters are not used.  The 

objective of showing cross validation results for both fixed and mixed effects models is to 

highlight the importance of the mixed effects approach.  The differences between the 

mixed and fixed effects model are particularly noticeable where the best fixed effect 

model results in an RMSE of 20.1 in Model E while the best mixed effect model attains 

an RMSE of 9.6 with both Model E and model F.  Table 8.4 shows how RMSE is lower 

for all models when specifying a mixed effects model demonstrating the importance of 

this type of specification in terms of prediction.   

Table 8.4: Cross Validation Results for Urban Tracts Pooled Data Models 

Model 
RMSE R2 

Fixed Mixed Fixed Mixed 

Pool - Base 183.6 83.2 15% 16% 

Pool - A 22.1 10.0 29% 43% 

Pool - B 41.3 13.0 25% 39% 

Pool - C 24.0 10.0 28% 44% 

Pool - D 91.8 31.2 21% 28% 

Pool - E 20.1 9.6 30% 44% 

Pool - F 22.2 9.6 29% 43% 

Pool - G 24.3 10.1 29% 43% 

Pool - H 33.2 12.3 27% 40% 

Pool - I 28.1 12.2 29% 42% 

Pool - J 22.3 10.0 26% 41% 

Pool - K 17.9 13.5 31% 35% 

 

Based on the performance measures in this table Models E and F appear to perform best 

and these two models also very good performance based on Nagelkerke marginal and 

conditional R2 of 0.451/0.611 and 0.0458/0.609 respectively.  Model E operationalizes 

race using an aggregate variable grouping all BIPOC people while Model F uses 

disaggregate measures including just the proportion of people in a tract that are Asian or 

Latinx.  Based on model performance and the desire to make inferences for disaggregate 

race variables, Model A and Model F will also be used for marginal effects and adjusted 

relative risk summaries below to evaluate the role the disaggregated race categories.  
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Model B performed reasonably well with RMSE of 13 and a pseudo marginal/conditional 

R2 of 0.454/0.606 and will also be explored in more detail in the marginal effect and 

relative risk section below.   

8.4.2.6 Marginal Effects Tests for Select Urban Tracts Pooled Data Model 

As explained above, marginal effects tests are partial derivatives of statistical models 

estimated above and allow for simpler interpretation of model outputs by holding all 

variables in the model constant at the observed mean while varying the covariate(s) of 

interest in order to see how the response variable changes.  This is done below for 

income, race, ethnicity, disability, and English proficiency to show the relative impact of 

changes in these variables based on observed ranges of those variables in Oregon.  

Marginal effects tests are also presented in this section for other select covariates while 

others are presented in the Appendix.   

Using the selected Model E and Model F marginal effects and adjusted relative risk are 

presented in Figure 8.11.  All covariates are held at the mean values based on the 

observed data while the median income is varied according to the range of observed 

values.  The marginal effects (top panel) show how total pedestrian injuries are expected 

in a tract based on the median income of the tract all else being equal.  Figure 8.11 shows 

that adjusted relative risk decreases by about 40% if the tract exhibits the state median 

income (~$60,000) and declines by nearly 94% in the highest income tracts.  In fact, in 

the seven urban tracts in Oregon where the median income is greater than $150,000 

(~37,000 people) there was only nine pedestrian injuries in 10 years while in tracts with 

less than $25,000 (~124,000 people) there were 551 fatal and severe injuries during the 

same time period.  There does not seem to be a significant difference between the two 

models based on these tests.  These figures highlight the clear relationship between 

pedestrian injuries and a tract’s median income even considering the confidence intervals. 



92 

 

Figure 8.11: Marginal effects and adjusted relative risk for median income (Urban tracts 

using Model E & F)  

The next set of marginal effects and adjusted relative risk results are presented in Figure 

8.12.  This figure shows how the percentage of the tract’s population that is BIPOC 

effects pedestrian injury outcomes.  The precision of the percent BIPOC variable is better 

for the total injury models compared to the fatal and severe model summarized above.  

The impact of this variable can be observed in the figure below where adjusted relative 

risk increases by about 13% in tracts with the state average (22%) percent of tract 

population that is BIPOC with tracts in the upper range of BIPOC % exhibiting up to 

40% more risk than tracts with no BIPOC communities, all else being equal.   
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Figure 8.12: Marginal effects and adjusted relative risk for percent of tract population 

BIPOC (Urban tracts using Model E)  

In Figure 8.13 presents marginal effects and adjusted relative risk is presented using the 

percent Asian and percent Latinx variables from Model F.  Other races were not modeled 

because variables representing other measures of race, as quantified by the Census, were 

not significantly correlated to pedestrian injuries at the Census tract level.  The figure 

below shows the positive correlation between percent Asian and Latinx by applying the 

model and calculating the margin effects.  As the proportion increase so does the 

expected number of pedestrian injuries in the tract.  Tracts with larger percentages of the 

population being Asian or Latinx peoples experience significantly more risk compared to 

tracts with lower percentages of the Asian and Latinx people.  
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Figure 8.13: Marginal effects and adjusted relative risk for Asian and Latinx variables 

(Urban tracts using Model F)  

The marginal effects and adjusted relative risk for the variable that accounts for the 

percent of the tracts households that have an individual with a disability are presented in 

Figure 8.14.  This figure shows how the increase in the proportion of households in a 

tract that have a disabled person increases the frequency of pedestrian injuries and 

associated relative risk.   
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Figure 8.14: Marginal effects and adjusted relative risk for percentage of tract’s 

households that have individual with disability (Urban tracts using Model B)  

8.4.2.7 All Pedestrian Injury Models Discussion 

The section above details the results of various statistical models attempting to 

understand the effects of sociodemographic, traffic exposure, and built environmental 

factors on total pedestrian injury outcomes at the tract level using an ecological analysis 

approach.  Even after controlling for traffic exposure and built environmental factors 

from available data, income and race measures are positively correlated with pedestrian 

injuries.  Total injury models appear more stable and precise than the fatal and severe 

injury models, likely due to the larger number of incidents recorded.  Income is a very 

stable measure varying minimally in the size of the effect from model to model with 

relatively precise confidence intervals.  The impact of the percent BIPOC variable is less 

certain but models above show a significant effect and correlation with pedestrian fatal 

and sever injuries.  Similarly, for disaggregate race variables percent Asian and percent 

Latinx are associated with more fatal and severe pedestrian injuries.  Percent of the tracts 

population that is Black is not significantly associated with pedestrian injuries as 
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mentioned above, potentially because of small numbers issues mentioned in the fatal and 

severe injury discussion above.   

Exposure to VMT on major arterials is an important factor in predicting where pedestrian 

injuries occur, as is the miles of non-interstate roadway with posted speed limits of 35 

mph or higher.  Though direct measures of pedestrian activity were not available transit 

measures including the percentage of workers using transit and the number of transit 

stops were positively associated with more total pedestrian injuries.  Additionally, the 

number of sidewalk miles (on ODOT’s system) were also positively associated with 

pedestrian injuries.  Available measures of the built environment such as the number of 

miles of sidewalk (on ODOT’s system) rated as substandard were positively correlated 

with pedestrian injuries though it’s not clear from this analysis if models are picking up 

on pedestrian activity with this variable or if its measuring the built environment.  Built 

environment measures such as job density, low wage job density, and alcohol 

establishment density are also positively associated with pedestrian injuries.   

8.5 CENSUS TRACT ANALYSIS DISCUSSION 

This chapter tests several model specifications aiming to find models that aid in the 

understanding of the association between income, ethnicity, and race at the tract level and 

pedestrian injury outcomes.  This chapter develops statistical models using pooled data to 

determine high performing models which are evaluating in detailed cross-validation, marginal 

effects and adjusted relative risk measures.  This analysis highlights the importance of 

considering the effects of income at the tract level in understanding where pedestrian injuries 

occur.  The income parameter is a consistent and stable predictor of pedestrian injury across 

study periods and injury severities.  Race is a significant variable in the pooled data and latter 

period (2014-2018) but is less stable across periods for the fatal and severe injury models (See 

Appendix A-3).  For the fatal and severe injury models, the early period (2008 to 2012) of data 

shows that some race variables are not significant at the 0.05 level such as in the percent Asian 

and percent BIPOC, though percent BIPOC is significant at the 0.10 level for this early period 

and is significant at the 0.05 level in the latter period (2014-2018) and pooled data.  For the total 

pedestrian injury models (see Appendix A-4) the percent BIPOC variable is significant in the 

latter period (2014-2018) and pooled data sets but not in the earlier study (2008-2014) period.  

The disaggregate racial variables including percent Latinx and percent Asian are stable for the 

latter period and the pooled data but percent Latinx effect is smaller and just outside the 0.05 

level of significance (p = 0.052) while percent Asian effect is smaller and not significant at the 

0.05 level.   

The differences in tract level analysis across time periods shows that, over time, disparities based 

on race may be growing.  This is corroborated by the FARS analysis detailed in Chapter 4 where 

pedestrian fatal injury rate disparities have grown between similar time periods as those analyzed 

in the tract level analysis.  In Table 8.5 pedestrian injury rates are summarized and show the 

difference between fatal pedestrian injury BIPOC rates and the Oregon average rates.  BIPOC 

fatal injury rates were 1.62 deaths per 100,000 people in 2009-2013 compared to the Oregon 

average of 1.46, a difference of 10 percent.  In the 2014-2018 time period this difference grew to 

15% with BIPOC injury rate of 2.85 and the Oregon average of 2.08.   
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Table 8.5: Pedestrian Fatal Injury Rates per 100,000 people 

FARS Period 

Fatal Injury Rate per 100,000 People 

White BIPOC  Oregon 

2009-2013 1.27 (1.26-1.28) 1.62 (1.54-1.7) 1.46 (1.45 - 1.47) 

2014-2018 1.56 (1.55-1.57) 2.85 (2.78-2.92) 2.08 (2.07 - 2.09) 

95% Confidence Interval shown in parentheses 

 

8.6 LIMITATIONS 

The analysis in this chapter uses an ecological approach where variables measured at the zonal 

level are used to understand disaggregate outcomes of pedestrian injury.  Many of the zonal 

measures represent residential information but this doesn’t necessarily mean that the pedestrian 

crash participants are the people who live in these Census tracts.  However, as demonstrated in 

Chapter 6 where home and incident location are analyzed to better understand the likelihood of 

crash participants being struck in their home tract, we know that a substantial proportion of 

people are struck in their home tract or a tract bordering their home tract.  Nevertheless the 

results of the statistical analysis tell us Census tract measures associated with pedestrian injuries 

and associating any sociodemographic measures to individual pedestrian injuries becomes an 

ecological fallacy and is not a proper way to interpret these results.  As mentioned in the future 

research section, agencies should adopt reporting protocols that include some measure of income 

and race in their crash database of record to more directly measure these sociodemographic data 

elements so as to monitor disparities more directly.   

Another limitation of this work is the imperfect assignment of crash injury locations to polygons, 

especially in cases where the crash is on a street that also represents a border of two Census 

geographies.  Based on the analysis of spatial autocorrelation featured in section 2.3.1, the bias 

introduced is likely negligible.  The zonal analysis featured here is meant as a starting point for a 

more disaggregate analysis of the network where roadway segments and intersections take the 

place of the Census tracts as the unit of analysis.  Many of these spatial data issues can be more 

easily resolved using this approach though it’s unclear if the overall findings would change.  A 

network -based analysis is being proposed for the next phase of this work and findings from this 

Technical Report should be compared to the next phase of work to see how spatial resolution 

impacts the overall story presented in this document.    
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9.0 FUTURE RESEARCH  

Even though this research utilized data from a variety of sources to document existing pedestrian 

injury disparities based on race and income, only the racial disparities are directly observable 

using the FARS data.  It would be ideal to have the income of crash participants to better control 

for income effects that are likely having a bigger effect in pedestrian injury outcomes compared 

to race.  This data element would be difficult to collect but proxy measures for income could 

more easily be derived and appended to crash databases of record such as those maintained by 

ODOT.  Potential proxy measures could be based on health system information such as if the 

crash participant is a recipient of Medicaid (Oregon Health Plan).  Since Medicaid recipients 

qualify for coverage based on income this would provide a rough measure of income.  Another 

potential proxy could be the income or poverty status of the Census geography, either block 

group or tract.  This would not be a direct measure of the crash participant’s income but could 

still be very useful to monitoring these disparities.   

FARS data does gather race of the crash participant it would be ideal to have this data element 

for other injury severities too.  By linking with health system data this attribute could be 

successfully added to agencies’ crash database of record for at least severe injuries.  This would 

likely require staff collecting those data to understand nuances with racial categorization and 

adopt a data domain that allows for racial categories that fit people’s self-identified racial 

identities but are still collapsible to a level useful for measuring social disparities.   

A key objective of this research was to determine if disparities have changed but it is outside the 

purview of this research to answer why disparities have changed.  Based on the analysis in this 

chapter, future research should explore the causes of the growing disparity.  Potential lines of 

inquiry could include the changing spatial distribution of poverty and whether low income 

people are increasingly moving to more automobile centric environments where pedestrian 

injury rates are likely higher.  Another line of inquiry would be to investigate the link between 

travel behavior and economic recovery following the 2008 Financial Crisis and related recession.  

The theory is that because low wage jobs disappeared in greater numbers during the 2008 

recession, perhaps people in low income households reduced their pedestrian exposure by 

working less and making fewer trips overall. This shows up in the crash injury data as fewer 

pedestrian injuries and lower rates, especially for people of color who are more likely to be low 

income.  Examining how pedestrian exposure is changing as more economic opportunities have 

been created for low income people since the end of 2008 economic recession would be a useful 

line of new research. 

Future research should also explore the role that vehicle design is having on pedestrian injury 

outcomes.  Between 1988 and 2018 the average weight of personal vehicles has increased by 

26% (EPA 2020).  Severity of pedestrian injury is likely higher due to increased weight of 

vehicles but it’s not clear if this increase is severity is experienced by everyone equally.  Future 

research could determine if changing vehicle design is exacerbating racial and income 

disparities.    
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Figure A-1: Pooled data urban tracts fatal and severe injury models 
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Figure A-2: Pooled data urban tracts total injury models 
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Figure A-3: All period’s data urban tracts fatal & severe injury select models  
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Figure A-4: All period’s data urban tracts total injury select models  
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	1.0 INTRODUCTION
	1.0 INTRODUCTION
	 

	Past research and planning has highlighted the existence of pedestrian injury disparities throughout the US and some local agencies have performed cursory analysis in Oregon.  However, no statewide analysis of pedestrian injuries has been completed to see how these injury outcomes differ by race and income.  This report aims to help better understand the factors that result in disparate pedestrian injury outcomes for different sociodemographic groups.  It’s important to recognize these disparities and under
	1.1 NATIONAL PEDESTRIAN CRASH AND FATALITY DISPARITIES BY INCOME AND RACE 
	Although income is not recorded in most crash data, numerous studies have found that areas with lower incomes and higher poverty rates are associated with increased injury and fatality risk (Stoker et al., 2015). A national study utilizing data from the National Highway Traffic Safety Administration (NHTSA ) Fatal Accident Reporting System (FARS) from 2008 to 2012 found that Census tracts in metropolitan areas with per capita income of less than $21,559 had pedestrian fatality rates twice as high as in area
	Black or African American pedestrians and American Indian or Alaska Native pedestrians are more likely to be struck and killed while walking, than the overall U.S rate (Smart Growth America & National Complete Streets Coalition, 2019). African-Americans and Native Americans are disproportionately likely to be pedestrian fatality victims “the U.S. population was 12% Black in 2000 and 13% Black in 2010, but 17% of pedestrians killed during 2002–2016 were Black. Native Americans were also overrepresented: they
	1.2 PATHWAYS TO PEDESTRAIN INJURY DISPARITIES 
	National data shows that lower-income and BIPOC households have fewer transportation options and are more reliant on walking and transit, modes that put them at greater risk of pedestrian crashes. For example, data from the 2017 National Household Transportation Survey shows that lower-income households and households with a Black primary household respondent were particularly likely to not have a car (FHWA, 2017). In terms of income, 26% of households earning under $25,000 do not own a car, compared to 5.2
	immigrants are more likely to have non-standard working hours, commuting in the middle of the day, later in the evening or at night (Sandt et al., 2016), with the non-daylight travel being a particularly dangerous time for pedestrians. A recent study found that people who low income or BIPOC are the most likely to walk for at least 10 minutes per day (Buehler et al, 2020). 
	Merlin et al. noted that that most studies agree “arterials, multilane streets, and roads with high speed limits are all associated with higher risk and more serious injuries (Merlin et al., 2020). A national study of pedestrian fatalities found that traffic volumes on non-access -controlled principal and minor arterials is strongly associated with increased pedestrian fatalities in urban areas (Mansfield et al., 2018).  
	Currently, there is limited direct research showing that lower-income and BIPOC individuals are disproportionally exposed to higher volume and higher speed arterials – a gap which this research seeks to partially address. However, there is evidence that lower-income areas have fewer pedestrian facilities to help people navigate traffic threats. For example, a national study found that 89% of streets in high-income areas have sidewalks on one or both sides of the street, compared to only 59% of streets in mi
	1.3 DISPARITIES IN OREGON 
	There has been limited studies of pedestrian safety disparities in Oregon; however, those that have touched on the topic suggested that similar disparities exist here. One study found that, for 2008 to 2012, the overall Portland metro area had a pedestrian fatality rate of 5.3 fatalities per 100,000 residents. For tracts with over 25% of residents living in poverty that number was 12.8 fatalities per 100,000 people, while for tracts from 15% to 25% in poverty that number was 7.1 fatalities per 100,000, and 
	1.4 RESEARCH GOALS AND OBJECTIVES 
	This report seeks to understand pedestrian crash and injury disparities in Oregon using available data sources. However, no one data source provides all the necessary information to understand the extent of how pedestrian crashes, injuries and fatalities affect different Oregon communities and groups, including low-income and BIPOC Oregonians. Therefore, the research pulls from a variety of sources including Fatal Accident Reporting System (FARS) data for Oregon, Oregon emergency medical service data, socio
	Pulling from these sources, the report documents that fatal pedestrian injury rates are higher for lower-income and BIPOC Oregonians.  To better understand some of the reasons behind these disparate rates, and to understand why areas with more low-income and BIPOC Oregonians experience higher rates of pedestrian injury, an analysis of pedestrian fatal and severe injuries is summarized using Census tract measures.  This analysis shows that tracts with more low-income people and a higher proportion of people 
	  
	2.0 LITERATURE REVIEW
	2.0 LITERATURE REVIEW
	 

	For a detailed literature review covering factors associated with pedestrian safety, safety disparities, and the impacts of inequity in transportation, see the separate Literature Review document.  
	2.1 ECOLOGICAL PEDESTRIAN CRASH STUDIES REVIEW 
	The research team identified 22 studies looking at spatial characteristics of pedestrian crashes published between 2000 and 2020, with priority given for studies published between 2010 and 2020 (earlier studies were included if they were deemed foundational to the topic area based on citations from multiple subsequent studies). An overview of key study and model details is provided in Table 12 of the separate Literature Review document. Of the 22 studies, seven included a focus on some aspect of equity, typ
	Select key details of the 22 studies included in the ecological pedestrian crash review are included below. 
	2.1.1 Zonal vs Network approach 
	Pedestrian safety analysis has often focused on roadway characteristics, with disaggregation at the intersection and segment level, looking at characteristics that might be associated with increased pedestrian crashes, injuries and fatalities. These usually consider roadway volumes, speeds (speed limit, 85% percentile speed, percent of vehicles travelling 5 or 10 miles over the speed limit, etc.), width (crossing distance, number of lanes, etc.), crossing facilities (presence, spacing, type, quality), media
	In order to incorporate equity considerations, including the potential influence of income, race, immigration status, age, or other factors, into analyses of pedestrian crash locations, frequency and severity, most studies have turned to census data. This allows for the assessment of whether, for example, lower-income areas are more likely to experience higher rates of pedestrian injury or fatality crashes. The process of connecting the network-based roadway characteristics, crash location data, and the zon
	Although crashes occurring within a zone (e.g. census tract) are not necessarily attributable to residents living within the zone, there is strong evidence that most pedestrian crashes occur nearby where people live. One study (Haas et al., 2015) found that half of pedestrian injuries occur within 1.1 miles from the victim’s home, while another found that half of pedestrian injuries occur within 1 mile from home, with 22% occurring in their home census tract, and another 22% occurring in a tract bordering t
	2.1.2 Analysis zone level 
	Most studies used geographic areas as analysis zones, which allowed the overlay of socio-demographic, land-use and certain transportation related variables over crash locations. Most frequently the census tract (CT) was the chosen analysis zone, used by 14 of the 21 studies. Four used block groups (BG), one used transportation analysis zone (TAZ), and one used zip code. One study included the CT, BG and TAZ to compare the effectiveness of each approach. Six studies used the actual crash location and applied
	2.1.3 Modeling approach 
	The most common modeling approach was to employ a negative binomial regression, employed by 9 of 22 studies, or a Poisson regression, employed by 4 of 22 studies. Other modeling approaches included ordinary least squares (2), binary and ordinal logistic regression (2), multinomial logistic regression, ordered probit, and path models, and colocation quotient analysis. 
	2.1.4 Dependent Variables 
	Studies were included on the basis of having some pedestrian safety related dependent variable; however, how the studies specified the variable, and the inclusion of multiple variables differed from study to study.  
	Nineteen looked at the number or density of pedestrian involved crashes; ten looked at injury-specific crashes, often focusing on severe injury; and eight looked at pedestrian fatalities. Eight studies looked at multiple levels of crashes (e.g. looking at pedestrian crashes and injuries) - of those five constructed separate models for each level, while three studies constructed models that examined tiered crash severity. In addition to these pedestrian crash outcomes, a few included additional outcome varia
	2.2 PEDESTRIAN SAFETY AND DISPARITY 
	The remainder of this literature review chapter pulls both from the 22 studies included in the ecological pedestrian crash safety review and other pedestrian safety studies, with a focus on sources of safety disparity. 
	2.2.1 Exposure, activity and pedestrian crashes 
	Lower income households are less likely to have a car, which limits their ability to make trips and access economic and social opportunity. People living in households at or below the poverty level are much more likely to have zero cars in the household (about 25%) (NHTS BRIEF: Mobility Challenges for Households in Poverty, 2014). Meanwhile, Black Americans are far less likely to own and drive a car (80% compared to 92% of all American households), while American Indians, Latinos/Hispanics, Asian, Pacific I
	It is also important to note that, for low-income households, cars represent a financial burden, as they tend to be older, less reliable, and more likely to need expensive repairs (Blumenberg & Manville, 2004). National Household Transportation Survey data from 2017 shows that the cost of travel is a financial burden that influences travel modes, with lower-income and BIPOC residents feeling higher levels of financials burden, and being more likely to choose to walk or take transit to reduce financial burde
	A literature review looking at the relationship between the built environment and walking across different socioeconomic contexts (Adkins et al., 2017) lends support to the notion that, for underserved communities, walking is less of a choice and more of a necessity. The review noted that low-income people walk more than high-income people, on average, in places where the built environment is not conducive or supportive of walking. While both groups had higher levels of walking in a supportive built environ
	Another review noted that people who are low-income, BIPOC, or immigrants are more likely to have non-standard working hours, commuting in the middle of the day, later in the evening or at night, rather than at peak commute times (Sandt et al., 2016). Commuting at these times may leave them walking to and from transit outside of daylight hours, which is when a disproportionate number of pedestrian crashes occur, as well as leaving them relying on transit during periods in which transit waits and transfers m
	Of the 22 studies included in the ecological analysis, 4 used the proportion of workers who commute by walking or taking transit, and eight studies used the number of transit stops. Of studies looking at walking or transit commute rates, one found that walking commute rates was associated with increased pedestrian crashes (Abdel-Aty el al 2013), two found that transit commute rates were associated with more pedestrian crashes (Abdel-Aty et al 2013; Dai and Jaworski 2016). Two others found that combined acti
	There is evidence to suggest that higher levels of pedestrian activity, on average, result in more, but less severe crashes. However, there are a number of situations wherein further context is needed. For example, while Merlin et al, in a literature review, found that pedestrian crashes increase with more population and employment density, “the relationship between fatalities and density is negative,” suggesting that crashes were less severe (Merlin et al., 2020). Guerra et al, in a study of crashes in the
	Select key findings from the ecological analysis review related to exposure and activity data are shown in 
	Select key findings from the ecological analysis review related to exposure and activity data are shown in 
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	Table 2.1: Literature Review Pedestrian Crash Findings - Exposure and Activity Related 
	Table
	TBody
	TR
	Span
	Variable 
	Variable 

	Summary of significant findings 
	Summary of significant findings 


	TR
	Span
	No cars in household 
	No cars in household 

	 Three studies found higher proportions of household without a car to be associated with increased pedestrian crashes (Chimba et al 2014; Cottrill and Thakuriah 2010; Lin et al 2019).  
	 Three studies found higher proportions of household without a car to be associated with increased pedestrian crashes (Chimba et al 2014; Cottrill and Thakuriah 2010; Lin et al 2019).  
	 Three studies found higher proportions of household without a car to be associated with increased pedestrian crashes (Chimba et al 2014; Cottrill and Thakuriah 2010; Lin et al 2019).  
	 Three studies found higher proportions of household without a car to be associated with increased pedestrian crashes (Chimba et al 2014; Cottrill and Thakuriah 2010; Lin et al 2019).  




	TR
	Span
	Walking and Transit Commute Rates 
	Walking and Transit Commute Rates 

	 Of six studies looking at walking or transit commute rates, one found that walking commute rates was associated with increased pedestrian crashes (Abdel-Aty el al 2013), two found that transit commute rates were associated with more pedestrian crashes (Abdel-Aty et al 2013; Dai and Jaworski 2016). 
	 Of six studies looking at walking or transit commute rates, one found that walking commute rates was associated with increased pedestrian crashes (Abdel-Aty el al 2013), two found that transit commute rates were associated with more pedestrian crashes (Abdel-Aty et al 2013; Dai and Jaworski 2016). 
	 Of six studies looking at walking or transit commute rates, one found that walking commute rates was associated with increased pedestrian crashes (Abdel-Aty el al 2013), two found that transit commute rates were associated with more pedestrian crashes (Abdel-Aty et al 2013; Dai and Jaworski 2016). 
	 Of six studies looking at walking or transit commute rates, one found that walking commute rates was associated with increased pedestrian crashes (Abdel-Aty el al 2013), two found that transit commute rates were associated with more pedestrian crashes (Abdel-Aty et al 2013; Dai and Jaworski 2016). 

	 Two others found that combined active commute measures (either transit plus biking or transit plus walking) were associated with increased pedestrian crashes (Lin et al 2019; Ukkusuri 2012).  
	 Two others found that combined active commute measures (either transit plus biking or transit plus walking) were associated with increased pedestrian crashes (Lin et al 2019; Ukkusuri 2012).  

	 Two studies considered the variables but did not include them in their final models (Mansfield et al 2018; Wier at al 2009). 
	 Two studies considered the variables but did not include them in their final models (Mansfield et al 2018; Wier at al 2009). 




	TR
	Span
	Transit Stops 
	Transit Stops 

	 Three studies found that more transit stops were associated with more pedestrian crashes (Dai and Jaworski 2016; Jermprapai and Srinivasan 2014; Ukkusuri 2012; Yu 2014). 
	 Three studies found that more transit stops were associated with more pedestrian crashes (Dai and Jaworski 2016; Jermprapai and Srinivasan 2014; Ukkusuri 2012; Yu 2014). 
	 Three studies found that more transit stops were associated with more pedestrian crashes (Dai and Jaworski 2016; Jermprapai and Srinivasan 2014; Ukkusuri 2012; Yu 2014). 
	 Three studies found that more transit stops were associated with more pedestrian crashes (Dai and Jaworski 2016; Jermprapai and Srinivasan 2014; Ukkusuri 2012; Yu 2014). 

	 One study found that more transit stops were associated with fewer pedestrian crashes (Clifton et al 2009) and one found decreased pedestrian crash severity (Yu 2015) 
	 One study found that more transit stops were associated with fewer pedestrian crashes (Clifton et al 2009) and one found decreased pedestrian crash severity (Yu 2015) 




	TR
	Span
	Population Density 
	Population Density 

	 8 studies found population density is associated with more pedestrian crashes (Apardian and Smirnov 2020; Chakravarthy et al 2010; Dai and Jaworski 2016; Dumbaugh and Li 2010; Lin et al 2019; Loukaitou-Sideris et al 2007; Ukkusuri 2012; Yu 2014) 
	 8 studies found population density is associated with more pedestrian crashes (Apardian and Smirnov 2020; Chakravarthy et al 2010; Dai and Jaworski 2016; Dumbaugh and Li 2010; Lin et al 2019; Loukaitou-Sideris et al 2007; Ukkusuri 2012; Yu 2014) 
	 8 studies found population density is associated with more pedestrian crashes (Apardian and Smirnov 2020; Chakravarthy et al 2010; Dai and Jaworski 2016; Dumbaugh and Li 2010; Lin et al 2019; Loukaitou-Sideris et al 2007; Ukkusuri 2012; Yu 2014) 
	 8 studies found population density is associated with more pedestrian crashes (Apardian and Smirnov 2020; Chakravarthy et al 2010; Dai and Jaworski 2016; Dumbaugh and Li 2010; Lin et al 2019; Loukaitou-Sideris et al 2007; Ukkusuri 2012; Yu 2014) 

	 1 study found population density is negatively associated with pedestrian crashes (Jermprapai and Srinivasan 2014) 
	 1 study found population density is negatively associated with pedestrian crashes (Jermprapai and Srinivasan 2014) 

	 5 studies found population density is associated with a higher number of injury or severe injury pedestrian crashes, or increased severity of pedestrian crashes (La Scala 2000; Lin et al 2019; Moudon et al 2011; Ukkusuri 2012; Yu 2015) 
	 5 studies found population density is associated with a higher number of injury or severe injury pedestrian crashes, or increased severity of pedestrian crashes (La Scala 2000; Lin et al 2019; Moudon et al 2011; Ukkusuri 2012; Yu 2015) 

	 Two studies found that increase population density was associated wither fewer fatalities in cities or urban areas (Guerra et al 2019; Mansfield et al 2018), while one also found it associated increased pedestrian crashes, injury crashes, and fatalities in suburban areas (Guerra et al 2019) 
	 Two studies found that increase population density was associated wither fewer fatalities in cities or urban areas (Guerra et al 2019; Mansfield et al 2018), while one also found it associated increased pedestrian crashes, injury crashes, and fatalities in suburban areas (Guerra et al 2019) 




	TR
	Span
	Employment Density 
	Employment Density 

	 Three studies found that higher employment density (or more weekly work trips) were associated with more pedestrian crashes (Guerra et al 2019; Jermprapai and Srinivasan 2014; Loukaitou-Sideris et al 2007; Wier at al 2009). Mansfield et al 2018 noted that in particular the employment density of entertainment and food services employees was associated with more pedestrian crashes. Two studies did not find employment density to be significant (Moudon et al 2011; Yu 2015) 
	 Three studies found that higher employment density (or more weekly work trips) were associated with more pedestrian crashes (Guerra et al 2019; Jermprapai and Srinivasan 2014; Loukaitou-Sideris et al 2007; Wier at al 2009). Mansfield et al 2018 noted that in particular the employment density of entertainment and food services employees was associated with more pedestrian crashes. Two studies did not find employment density to be significant (Moudon et al 2011; Yu 2015) 
	 Three studies found that higher employment density (or more weekly work trips) were associated with more pedestrian crashes (Guerra et al 2019; Jermprapai and Srinivasan 2014; Loukaitou-Sideris et al 2007; Wier at al 2009). Mansfield et al 2018 noted that in particular the employment density of entertainment and food services employees was associated with more pedestrian crashes. Two studies did not find employment density to be significant (Moudon et al 2011; Yu 2015) 
	 Three studies found that higher employment density (or more weekly work trips) were associated with more pedestrian crashes (Guerra et al 2019; Jermprapai and Srinivasan 2014; Loukaitou-Sideris et al 2007; Wier at al 2009). Mansfield et al 2018 noted that in particular the employment density of entertainment and food services employees was associated with more pedestrian crashes. Two studies did not find employment density to be significant (Moudon et al 2011; Yu 2015) 






	 
	2.2.2 Roadway factors and pedestrian crashes 
	Most studies (though not all) have found that increased intersection density is associated with more crashes, including pedestrian-involved crashes, although a few studies have found that either injury severity is less when crashes occur at intersections (Abdel-Aty et al., 2013; Merlin 
	et al., 2020). For example, one study in Florida found that more road miles and more intersections in a block group were associated with more pedestrian crashes (Jermprapai & Srinivasan, 2014). Another study in Florida found that block groups with more traffic signals and more bus stops per mile were associated with increased pedestrian crash frequency (Lin et al., 2019). Twelve of 22 studies in the ecological analysis looked at the number, density and/or configuration of intersections. Seven specifically f
	Numerous studies have found that higher speeds are directly tied to higher injury severity and increased fatality risk for pedestrians (Stoker et al., 2015). Merlin et al. noted that that most studies agree “arterials, multilane streets, and roads with high speed limits are all associated with higher risk and more serious injuries (Merlin et al., 2020). Six studies in the ecological analysis included measures of speed, usually posted speed limits, which were calculated either as an area-wide average speed, 
	Higher traffic volumes are also associated with more pedestrian crashes (Jermprapai & Srinivasan, 2014). A national study of pedestrian fatalities found that traffic volumes on non-access controlled principal and minor arterials is strongly associated with increased pedestrian fatalities in urban areas (Mansfield et al., 2018)
	Higher traffic volumes are also associated with more pedestrian crashes (Jermprapai & Srinivasan, 2014). A national study of pedestrian fatalities found that traffic volumes on non-access controlled principal and minor arterials is strongly associated with increased pedestrian fatalities in urban areas (Mansfield et al., 2018)
	.
	.

	 Multiple studies in urban areas have found traffic volume to positively associate with pedestrian injuries (Guerra et al., 2019; Loukaitou-Sideris et al., 2016; Stoker et al., 2015; Wier et al., 2009). Wier et al found that traffic volume was the strongest predictor of pedestrian collisions, while Guerra et al. noted that a doubling of AADT corresponded to 25 to 30% more pedestrian crashes and serious injuries. Assessments looking at vehicle miles travelled, rather than AADT, have also been found to be pos

	Select key findings from the ecological analysis review related to roadway factors are shown in 
	Select key findings from the ecological analysis review related to roadway factors are shown in 
	Table 2.2
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	Table 2.2: Literature Review Pedestrian Crash Findings – Roadway Factors 
	Table
	TBody
	TR
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	Summary of significant findings 
	Summary of significant findings 


	TR
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	Arterials and Traffic Speed 
	Arterials and Traffic Speed 

	 Six studies looked at the miles or proportion of arterial roads. Four found that higher proportion of arterials (Wier et al 2009), or more miles of arterial roads (Abdel Aty et al 2013; Dumbaugh and Li 2010; Guerra et al 2019), were associated with more pedestrian crashes. Two others found that higher proportion of lower speed or local roads were associated with fewer pedestrian crashes (Lin et al 2019; Ukkusuri 2012)  
	 Six studies looked at the miles or proportion of arterial roads. Four found that higher proportion of arterials (Wier et al 2009), or more miles of arterial roads (Abdel Aty et al 2013; Dumbaugh and Li 2010; Guerra et al 2019), were associated with more pedestrian crashes. Two others found that higher proportion of lower speed or local roads were associated with fewer pedestrian crashes (Lin et al 2019; Ukkusuri 2012)  
	 Six studies looked at the miles or proportion of arterial roads. Four found that higher proportion of arterials (Wier et al 2009), or more miles of arterial roads (Abdel Aty et al 2013; Dumbaugh and Li 2010; Guerra et al 2019), were associated with more pedestrian crashes. Two others found that higher proportion of lower speed or local roads were associated with fewer pedestrian crashes (Lin et al 2019; Ukkusuri 2012)  
	 Six studies looked at the miles or proportion of arterial roads. Four found that higher proportion of arterials (Wier et al 2009), or more miles of arterial roads (Abdel Aty et al 2013; Dumbaugh and Li 2010; Guerra et al 2019), were associated with more pedestrian crashes. Two others found that higher proportion of lower speed or local roads were associated with fewer pedestrian crashes (Lin et al 2019; Ukkusuri 2012)  

	 Five studies looked at average vehicle speeds, with four finding that higher average speeds were associated with more pedestrian crashes (Chimba et al 2014; DiMaggio 2015; Guerra et al 2019) C and /or increased injury severity (Guerra et al 2019; Yu 2015). One looked at maximum speed limit (Dai and Jaworski 2016) and found it to not be significant. 
	 Five studies looked at average vehicle speeds, with four finding that higher average speeds were associated with more pedestrian crashes (Chimba et al 2014; DiMaggio 2015; Guerra et al 2019) C and /or increased injury severity (Guerra et al 2019; Yu 2015). One looked at maximum speed limit (Dai and Jaworski 2016) and found it to not be significant. 




	TR
	Span
	Traffic Volume 
	Traffic Volume 

	 Of 11 studies looking at traffic volumes, such as VMT or AADT density, seven found that higher average traffic volumes levels were associated with more pedestrian crashes (Cottrill and Thakuriah 2010; DiMaggio 2015; Guerra et al 2019; La Scala 2000; Loukaitou-Sideris et al 2007; Mansfield et al 2018; Wier at al 2009). Four studies did not find volume to be significant (Dumbaugh and Li 2010; Kim 2019; Yu 2014;Yu 2015) 
	 Of 11 studies looking at traffic volumes, such as VMT or AADT density, seven found that higher average traffic volumes levels were associated with more pedestrian crashes (Cottrill and Thakuriah 2010; DiMaggio 2015; Guerra et al 2019; La Scala 2000; Loukaitou-Sideris et al 2007; Mansfield et al 2018; Wier at al 2009). Four studies did not find volume to be significant (Dumbaugh and Li 2010; Kim 2019; Yu 2014;Yu 2015) 
	 Of 11 studies looking at traffic volumes, such as VMT or AADT density, seven found that higher average traffic volumes levels were associated with more pedestrian crashes (Cottrill and Thakuriah 2010; DiMaggio 2015; Guerra et al 2019; La Scala 2000; Loukaitou-Sideris et al 2007; Mansfield et al 2018; Wier at al 2009). Four studies did not find volume to be significant (Dumbaugh and Li 2010; Kim 2019; Yu 2014;Yu 2015) 
	 Of 11 studies looking at traffic volumes, such as VMT or AADT density, seven found that higher average traffic volumes levels were associated with more pedestrian crashes (Cottrill and Thakuriah 2010; DiMaggio 2015; Guerra et al 2019; La Scala 2000; Loukaitou-Sideris et al 2007; Mansfield et al 2018; Wier at al 2009). Four studies did not find volume to be significant (Dumbaugh and Li 2010; Kim 2019; Yu 2014;Yu 2015) 






	 
	2.2.3 Sociodemographic factors and pedestrian crashes 
	As noted in the introduction, lower-income and BIPOC pedestrian experience disproportionately high rates of traffic injury. Related factors such as poverty status, education level, language, and age are also associated with disparate pedestrian safety outcomes. All but two of the 22 studies included in the ecological studies review included some socio-economic variables in their analysis; with the most frequently used variables being income, age, race/ethnicity, and education.  
	Geographic analyses are consistent with national numbers indicating disproportionate pedestrian injury rates among BIPOC residents, with areas of higher BIPOC populations being associated with more pedestrian crashes. For example, a geographic analysis in Florida found that areas with a higher proportion of BIPOC residents are associated with significant increases in pedestrian crashes (Abdel-Aty et al., 2013). A 2010 study in Chicago found that census tracts with higher than average (for the region) propor
	are Latino/Hispanic (6 studies), or proportion who are Asian (2 studies). Two studies looked at overall proportion of BIPOC population.  
	Income is strongly correlated with pedestrian crashes and fatalities. Numerous studies have found an inverse relationship between socioeconomic status and injury and fatality risk (Stoker et al., 2015). A literature review of correlates with pedestrian crashes found five studies looking at the connection between income and pedestrian crashes - in each study, higher income levels were associated with fewer pedestrian crashes (Jermprapai & Srinivasan, 2014).  For example, in a study of pedestrian crashes in O
	People who cannot drive, including children, older adults and people with disabilities are more reliant on walking and transit to get around, and are more reliant on high quality facilities to navigate safely (Sandt et al., 2016). Young children are overrepresented in traffic deaths, representing 21% of road traffic deaths, making it a second leading cause of death for young children and a leading cause of childhood disability (Stoker et al., 2015). There is mixed evidence on whether areas with older adults
	A literature review of correlates with pedestrian crashes found three studies looking at the connection between education and pedestrian crashes - in each study, higher education levels were associated with fewer pedestrian crashes (Jermprapai & Srinivasan, 2014). Eight of the 22 studies in the ecological analysis looked at education, typically including the proportion of the adult population with a high school diploma. 
	Other socioeconomic demographics included among the 22 studies in the ecological analysis were 5 studies with proportion who do not speak English (or speak it well), 4 studies with proportion of population employed (or unemployed); 4 with proportion of population with a car; as well as gender (3), homeownership (2), housing value (2), and household composition in terms of single or living alone (2). See 
	Other socioeconomic demographics included among the 22 studies in the ecological analysis were 5 studies with proportion who do not speak English (or speak it well), 4 studies with proportion of population employed (or unemployed); 4 with proportion of population with a car; as well as gender (3), homeownership (2), housing value (2), and household composition in terms of single or living alone (2). See 
	Table 2.3
	Table 2.3

	 for a summary of literature review findings on sociodemographic variables.

	Table 2.3: Literature Review Pedestrian Crash Findings - Sociodemographic 
	Table
	TBody
	TR
	Span
	Variable 
	Variable 
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	Summary of significant findings 
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	Race / Ethnicity 
	Race / Ethnicity 

	 Seven studies found that higher proportion of minorities are associated with more pedestrian crashes (Abdel-Aty et al 2013; Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Loukaitou-Sideris et al 2007; Mansfield et al 2018), including 5 finding specific connections between higher African-American or Black populations and pedestrian crashes (Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Mansfield et al 2018), two findings connections betwe
	 Seven studies found that higher proportion of minorities are associated with more pedestrian crashes (Abdel-Aty et al 2013; Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Loukaitou-Sideris et al 2007; Mansfield et al 2018), including 5 finding specific connections between higher African-American or Black populations and pedestrian crashes (Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Mansfield et al 2018), two findings connections betwe
	 Seven studies found that higher proportion of minorities are associated with more pedestrian crashes (Abdel-Aty et al 2013; Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Loukaitou-Sideris et al 2007; Mansfield et al 2018), including 5 finding specific connections between higher African-American or Black populations and pedestrian crashes (Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Mansfield et al 2018), two findings connections betwe
	 Seven studies found that higher proportion of minorities are associated with more pedestrian crashes (Abdel-Aty et al 2013; Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Loukaitou-Sideris et al 2007; Mansfield et al 2018), including 5 finding specific connections between higher African-American or Black populations and pedestrian crashes (Apardian and Smirnov 2020; Chimba et al 2014; Guerra et al 2019; Lin et al 2019; Mansfield et al 2018), two findings connections betwe

	 Conversely, two studies found connections between higher white populations and reduced pedestrian crashes (Chimba et al 2014; Yu 2014) 
	 Conversely, two studies found connections between higher white populations and reduced pedestrian crashes (Chimba et al 2014; Yu 2014) 
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	Income 
	Income 

	 Six studies found household income to be associated with FEWER pedestrian crashes (Cottrill and Thakuriah 2010; Dai and Jaworski 2016; DiMaggio 2015; Jermprapai and Srinivasan 2014; Mansfield et al 2018).  
	 Six studies found household income to be associated with FEWER pedestrian crashes (Cottrill and Thakuriah 2010; Dai and Jaworski 2016; DiMaggio 2015; Jermprapai and Srinivasan 2014; Mansfield et al 2018).  
	 Six studies found household income to be associated with FEWER pedestrian crashes (Cottrill and Thakuriah 2010; Dai and Jaworski 2016; DiMaggio 2015; Jermprapai and Srinivasan 2014; Mansfield et al 2018).  
	 Six studies found household income to be associated with FEWER pedestrian crashes (Cottrill and Thakuriah 2010; Dai and Jaworski 2016; DiMaggio 2015; Jermprapai and Srinivasan 2014; Mansfield et al 2018).  

	 One study found household income to be associated with more pedestrian crashes (Chimba et al 2014). 
	 One study found household income to be associated with more pedestrian crashes (Chimba et al 2014). 

	 Five studies considered the variable but did not include it in their final models (Abdel-Aty et al 2013; Clifton et al 2009; La Scala 2000; Lin et al 2019; Yu 2015) 
	 Five studies considered the variable but did not include it in their final models (Abdel-Aty et al 2013; Clifton et al 2009; La Scala 2000; Lin et al 2019; Yu 2015) 
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	Poverty 
	Poverty 

	 Five studies found that higher proportions of household below poverty level were associated with increased pedestrian crashes (Chakravarthy et al 2010; Chimba et al 2014; Guerra et al 2019; Jermprapai and Srinivasan 2014; Wier at al 2009) 
	 Five studies found that higher proportions of household below poverty level were associated with increased pedestrian crashes (Chakravarthy et al 2010; Chimba et al 2014; Guerra et al 2019; Jermprapai and Srinivasan 2014; Wier at al 2009) 
	 Five studies found that higher proportions of household below poverty level were associated with increased pedestrian crashes (Chakravarthy et al 2010; Chimba et al 2014; Guerra et al 2019; Jermprapai and Srinivasan 2014; Wier at al 2009) 
	 Five studies found that higher proportions of household below poverty level were associated with increased pedestrian crashes (Chakravarthy et al 2010; Chimba et al 2014; Guerra et al 2019; Jermprapai and Srinivasan 2014; Wier at al 2009) 
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	Education Level 
	Education Level 

	 Three studies looking at education levels found that the proportion of residents without a high school diploma or equivalent was associated with increased pedestrian crashes (Chakravarthy et al 2010; Lin et al 2019), pedestrian injuries (La Scala 2000) and severe pedestrian injuries (Lin et al 2019). One did not find the variable significant (Apardian and Smirnov 2020). 
	 Three studies looking at education levels found that the proportion of residents without a high school diploma or equivalent was associated with increased pedestrian crashes (Chakravarthy et al 2010; Lin et al 2019), pedestrian injuries (La Scala 2000) and severe pedestrian injuries (Lin et al 2019). One did not find the variable significant (Apardian and Smirnov 2020). 
	 Three studies looking at education levels found that the proportion of residents without a high school diploma or equivalent was associated with increased pedestrian crashes (Chakravarthy et al 2010; Lin et al 2019), pedestrian injuries (La Scala 2000) and severe pedestrian injuries (Lin et al 2019). One did not find the variable significant (Apardian and Smirnov 2020). 
	 Three studies looking at education levels found that the proportion of residents without a high school diploma or equivalent was associated with increased pedestrian crashes (Chakravarthy et al 2010; Lin et al 2019), pedestrian injuries (La Scala 2000) and severe pedestrian injuries (Lin et al 2019). One did not find the variable significant (Apardian and Smirnov 2020). 
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	Non-English Language 
	Non-English Language 

	 Three studies found connections between higher proportion of non-English speaking residents and more pedestrian crashes (Chakravarthy et al 2010; Dai and Jaworski 2016; Jermprapai and Srinivasan 2014), with Jermprapai and Srinivasan also finding proportion of non-English speaking residents associated with severe pedestrian crashes, fatal pedestrian crashes, and nighttime pedestrian crashes.  
	 Three studies found connections between higher proportion of non-English speaking residents and more pedestrian crashes (Chakravarthy et al 2010; Dai and Jaworski 2016; Jermprapai and Srinivasan 2014), with Jermprapai and Srinivasan also finding proportion of non-English speaking residents associated with severe pedestrian crashes, fatal pedestrian crashes, and nighttime pedestrian crashes.  
	 Three studies found connections between higher proportion of non-English speaking residents and more pedestrian crashes (Chakravarthy et al 2010; Dai and Jaworski 2016; Jermprapai and Srinivasan 2014), with Jermprapai and Srinivasan also finding proportion of non-English speaking residents associated with severe pedestrian crashes, fatal pedestrian crashes, and nighttime pedestrian crashes.  
	 Three studies found connections between higher proportion of non-English speaking residents and more pedestrian crashes (Chakravarthy et al 2010; Dai and Jaworski 2016; Jermprapai and Srinivasan 2014), with Jermprapai and Srinivasan also finding proportion of non-English speaking residents associated with severe pedestrian crashes, fatal pedestrian crashes, and nighttime pedestrian crashes.  

	 Two studies considered the variable but did not include it in their final models (Cottrill and Thakuriah 2010; Lin et al 2019) 
	 Two studies considered the variable but did not include it in their final models (Cottrill and Thakuriah 2010; Lin et al 2019) 
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	Summary of significant findings 
	Summary of significant findings 
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	Un-employment 

	 La Scala 2000 found that higher unemployment was associated with more pedestrian injury crashes. 
	 La Scala 2000 found that higher unemployment was associated with more pedestrian injury crashes. 
	 La Scala 2000 found that higher unemployment was associated with more pedestrian injury crashes. 
	 La Scala 2000 found that higher unemployment was associated with more pedestrian injury crashes. 

	 However, Chimba et al 2014 found that higher labor force participation was associate with more pedestrian crashes. 
	 However, Chimba et al 2014 found that higher labor force participation was associate with more pedestrian crashes. 
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	Age 
	Age 

	 Studies looking at average age have found age to be associated with increased severity of crashes (Moudon et al 2011 Yu 2015).  
	 Studies looking at average age have found age to be associated with increased severity of crashes (Moudon et al 2011 Yu 2015).  
	 Studies looking at average age have found age to be associated with increased severity of crashes (Moudon et al 2011 Yu 2015).  
	 Studies looking at average age have found age to be associated with increased severity of crashes (Moudon et al 2011 Yu 2015).  

	 One study found age negatively associated with crashes, severity and nighttime crashes (Jermprapai and Srinivasan 2014). 
	 One study found age negatively associated with crashes, severity and nighttime crashes (Jermprapai and Srinivasan 2014). 


	 
	Proportion of 65+: 
	 Of studies looking at the proportion of residents over age 65, five found that to be associated with fewer pedestrian crashes(Chakravarthy et al 2010;  Dai and Jaworski 2016; Lin et al 2019; Ukkusuri 2012; Wier at al 2009), and one found it to be associated with more pedestrian crashes (Guerra et al 2019). 
	 Of studies looking at the proportion of residents over age 65, five found that to be associated with fewer pedestrian crashes(Chakravarthy et al 2010;  Dai and Jaworski 2016; Lin et al 2019; Ukkusuri 2012; Wier at al 2009), and one found it to be associated with more pedestrian crashes (Guerra et al 2019). 
	 Of studies looking at the proportion of residents over age 65, five found that to be associated with fewer pedestrian crashes(Chakravarthy et al 2010;  Dai and Jaworski 2016; Lin et al 2019; Ukkusuri 2012; Wier at al 2009), and one found it to be associated with more pedestrian crashes (Guerra et al 2019). 

	 Two studies found higher proportions of 65+ residents to be associated with fewer severe pedestrian crashes(Jermprapai and Srinivasan 2014 Lin et al 2019), while three found it to be associated with more severe crashes (Clifton et al 2009; Moudon et al 2011; Yu 2015). 
	 Two studies found higher proportions of 65+ residents to be associated with fewer severe pedestrian crashes(Jermprapai and Srinivasan 2014 Lin et al 2019), while three found it to be associated with more severe crashes (Clifton et al 2009; Moudon et al 2011; Yu 2015). 


	 
	Proportion of children: 
	 Studies are mixed on the impact of higher proportion of children on pedestrian crash rates. Three found increases in pedestrian crash rates (Chakravarthy et al 2010; Clifton et al 2009; Ukkusuri 2012), while two found decreases (Apardian and Smirnov 2020; La Scala 2000).  
	 Studies are mixed on the impact of higher proportion of children on pedestrian crash rates. Three found increases in pedestrian crash rates (Chakravarthy et al 2010; Clifton et al 2009; Ukkusuri 2012), while two found decreases (Apardian and Smirnov 2020; La Scala 2000).  
	 Studies are mixed on the impact of higher proportion of children on pedestrian crash rates. Three found increases in pedestrian crash rates (Chakravarthy et al 2010; Clifton et al 2009; Ukkusuri 2012), while two found decreases (Apardian and Smirnov 2020; La Scala 2000).  

	 Another study found the proportion of kids in K-12 in a TAZ associated with more pedestrian crashes, while the proportion of kids age 0-15 was associated with fewer pedestrian crashes (Abdel-Aty et al 2013) 
	 Another study found the proportion of kids in K-12 in a TAZ associated with more pedestrian crashes, while the proportion of kids age 0-15 was associated with fewer pedestrian crashes (Abdel-Aty et al 2013) 






	2.2.4 Land use 
	Land use variables are often a potential proxy for the types of interactions that pedestrians or motorists will have on the nearby streets. Eighteen of the 22 studies included land use considerations in their analysis, generally looking at the proportion of land occupied by a certain use, or the presence or number of certain types of destinations, such as school or bars. The most commonly used land use variables were the presence of or proportion of land used by residential purposes (9 studies) and the prop
	In general, land uses that are significant attractors of pedestrian activity are associated with higher pedestrian crash risk. A national study found that, in both urban and rural areas, higher employment in the retail sector was associated with higher pedestrian fatality rates (Mansfield et al., 2018). Merlin et al found that commercial and mixed-use areas, along with areas nears schools, are associated with higher crash risk (Merlin et al., 2020). A study in San Francisco, CA, found that areas with a high
	While denser urban areas experience more pedestrian crashes, there is evidence that they are on average less severe. A Florida statewide pedestrian crash analysis found that census block groups in urban areas had more pedestrian crashes, but fewer fatal crashes than rural areas (Jermprapai & Srinivasan, 2014), possibly due to the lower speeds and more walking activity - proximity to medical care may be related as well. Another study notes that, when controlling for miles walked, pedestrian fatality rates ar
	Consistent with the notion that higher density zones with lower density larger areas are more prone to pedestrian crash risk, there is considerable evidence that land uses such as strip malls and areas associated with arterial style big box commercial areas are connected to higher crash risk. A literature review of pedestrian risk factors found that rural areas and sprawling urban areas have higher pedestrian crash and fatality rates (not necessarily absolute numbers), which may be due to higher vehicle mil
	while denser street networks are associated with fewer crashes (Stoker et al., 2015). A study in Florida found that density of discount stores, convenience stores and fast food stores was also associated with increased pedestrian crash frequency (Lin et al., 2019).  
	Some studies have found that alcohol sales locations (including bars, liquor stores, restaurants, and grocery stores) are associated with increased pedestrian crash risk. One study in New York City looked at the presence or absence of alcohol outlets in a census tract, and found that the presence of such an outlet in a tract increased the risk of an alcohol-related pedestrian or bicycle crash by 47%, although the authors noted that many such tracts had concentrations of outlets, such as entertainment distri
	2.2.5 Pedestrian infrastructure 
	Notably, there was limited inclusion of pedestrian-oriented transportation infrastructure among the 22 studies included in the ecological analysis review, with 6 studies including sidewalk completeness measures, and 2 studies including crosswalk presence or absence information. 
	There is evidence that underserved communities are less likely to have safe, accessible and high-quality pedestrian facilities (Sandt et al., 2016). A University of Illinois at Chicago study conducted street fields audits in a nationally representative sample 154 communities around the U.S., and found that 89% of streets in high-income areas ($57k+ on average) have sidewalks on one or both sides of the street, while only 59% of streets in middle income ($45-57k) areas do, and only 49% of streets in 51-54% i
	The literature is mixed on the relationship of the presence of sidewalks on crash risk for pedestrians, with some studies finding decreased risk and others finding increased risk - the latter may be due to the presence of sidewalks being correlated with higher pedestrian activity, and therefore higher exposure (Merlin et al., 2020).  
	Having access to safe crossing features is a core requirement for a safe pedestrian network, particularly for higher volume and wide roads. A study in Los Angeles, CA, found that 40% of pedestrian collisions occurred in marked crosswalks at intersections, while 28% took place while crossing outside marked crosswalk; 12% while a pedestrian was walking along the side of the road (not crossing), and 20% in other locations such as on a sidewalk, in parking lot, or other non-road locations (Loukaitou-Sideris et 
	less likely to have crossing features. A 2012 study found that streets in high income areas are much more likely to have marked crosswalks (13% of streets), than middle income (8%) or low income (7%)  (Gibbs et al., 2012). In terms of traffic calming features such as pedestrian medians and islands and curb extensions, 8% of streets in high income areas have such features, compared to 4% in middle income areas and 3% in low-income areas (Gibbs et al., 2012). 
	Two-thirds of fatal pedestrian collisions occur at night or in low light conditions, with twilight or the first hour of darkness having the highest frequency of such collisions (Stoker et al., 2015). Lack of adequate street lighting is also associated with pedestrian crashes and fatalities. A study in block groups in Broward and Palm Beach counties, Florida, found that a “dark-not lighted condition,” particularly in higher speed limit locations, was the most influential variable relating to severe pedestria
	2.2.6 Driver Yielding and Bias 
	Several studies in recent years are uncovering bias in driver yielding behavior. A 2015 study of driver yielding behavior in Portland, Oregon, found that Black male pedestrians waiting to cross at a marked midblock crosswalk  “were passed by twice as many cars and experienced wait times that were 32% longer than White pedestrians” (Goddard et al., 2015). Although the study did not test whether this difference was due to explicit or implicit bias, the authors suggest that split second decisions about safety 
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	It is important to utilize information and data from a variety of sources to understand the role that race and income play in pedestrian injury outcomes.  This chapter documents the data sets utilized in this report, along with any transformations or calculations performed on the data before analysis. Basic data descriptive and / or high-level summaries of the data are included to help inform other sections of this technical report.   
	This technical report evaluates multiple elements of pedestrian traffic injury outcomes, identifying disparities by social equity factors such as income and race.  To corroborate findings from any individual analysis, multiple analyses are performed to build confidence in any specific findings.  The datasets used in this research are summarized in 
	This technical report evaluates multiple elements of pedestrian traffic injury outcomes, identifying disparities by social equity factors such as income and race.  To corroborate findings from any individual analysis, multiple analyses are performed to build confidence in any specific findings.  The datasets used in this research are summarized in 
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	 below.   

	Data for the crash injury related analysis comes from three sources including ODOT, National Highway Traffic Safety Administration (NHTSA) and Oregon Health Authority’s (OHA) Oregon Emergency Medical Service Information System (OR-EMSIS).  ODOT’s Crash Data System (CDS) crash data file is Oregon’s traffic crash database of record and represents the best available data on pedestrian traffic injuries in Oregon.  NHTSA’s Fatal Accident Reporting System (FARS) database collects fatally injured traffic participa
	Table 3.1: Dataset Purpose and Source Summary Table 
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	Agency  
	Agency  

	Data Purpose 
	Data Purpose 

	Report Chapter 
	Report Chapter 
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	Ecological Analysis 
	Ecological Analysis 

	Population-based Rates 
	Population-based Rates 

	Home/Crash Location Analysis 
	Home/Crash Location Analysis 

	Travel Activity 
	Travel Activity 
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	Crash Data System (CDS) 
	Crash Data System (CDS) 

	Oregon DOT 
	Oregon DOT 

	
	

	  
	  

	  
	  

	  
	  

	Chapter 5, 
	Chapter 5, 
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	Fatal Accident Reporting System (FARS) 
	Fatal Accident Reporting System (FARS) 

	NHTSA 
	NHTSA 

	  
	  

	
	

	  
	  

	  
	  

	Chapter 4 
	Chapter 4 


	TR
	Span
	Oregon Emergency Medical Service Information System (OR-EMSIS) 
	Oregon Emergency Medical Service Information System (OR-EMSIS) 

	Oregon Health Authority 
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	3.1 OREGON DEPARTMENT OF TRANSPORTATION CRASH DATA SYSTEM DATA (CDS) 
	ODOT CDS data is the authoritative source of crash incidents in Oregon and is developed and maintained by the department’s Crash Data Section. These data are derived from police records and driver self-reports of incidents that happen on city streets, county roads, and state highways. Data is available at different spatial resolutions depending on the year of interest with low spatial resolution for years the earlier years of data, spanning years 2002 to 2006 with higher spatial resolution for years 2006 to
	The point location of the pedestrian injury is used to locate the injury crash within Census tracts using a spatial overlay function from the sp package (Pebesma & Bivand 2005; Roger et al. 2013) in the open-source statistical computing platform R.  This calculation uses the spatial precision of the crash point and Census tract spatial data to decide on a single polygon (tract) to locate the pedestrian injury point.  The challenge of accurately assigning crash points that fall on Census tract boundaries was
	The specific location of a crash point is derived from the source data which includes either a police report or the DMV report filed by the driver(s) involved in a collision.  There is potential for these documented points to not fall exactly where the crash occurred, especially with the reports from DMV where the driver filing out the report is untrained in this documentation process or might misremember various details of the incident.   
	3.2 NHTSA FATAL ACCIDENT REPORTING SYSTEM (FARS) DATA 
	FARS collects traffic fatality data through state data files, with the police traffic crash report as the primary source. Additionally, FARS analysts use other state data, such as driver records, vehicle records and medical records. Trained personnel interpret and code data directly from the police traffic crash reports onto an electronic file.  Race of the fatality injured crash participant is derived from the death certificate.   
	These data are available at the location of the incident for data starting in 2002 but are only available at the city and county level for data prior to this year.  Data for this project were accessed from the NHTSA FTP site and downloaded and formatted using the R statistical computing platform.  These data will be used to calculate age-adjusted population based pedestrian injury rates by race in order to understand pedestrian injury disparities in Oregon.  
	3.3 OREGON EMERGENCY MEDICAL SERVICES INFORMATION SYSTEM (OR-EMSIS) DATA 
	ODOT crash data tracks the crash location of the incident but no information is available on the home location of the pedestrian crash participant.  Knowing more about the home location of pedestrian crash participants can help with how to best interpret findings in featured in this report. The OR-EMSIS data will be used to answer three questions raised by TAC members in this research and include: 
	 What is the typical distance from home that pedestrian incidents occur? 
	 What is the typical distance from home that pedestrian incidents occur? 
	 What is the typical distance from home that pedestrian incidents occur? 

	 How often are people in the tract in which they reside or a neighboring tract? 
	 How often are people in the tract in which they reside or a neighboring tract? 

	 How does the race, ethnicity and income composition of their home tract compare with race, ethnicity and income composition of the incident tract? 
	 How does the race, ethnicity and income composition of their home tract compare with race, ethnicity and income composition of the incident tract? 


	OR-EMSIS data is derived from crash incidents where an EMS provider responded to a traffic crash.  These data are reported to a centralized repository managed by Oregon Health Authority’s EMS and Trauma Systems unit.  Reporting by EMS agencies in Oregon became mandatory on January 1st 2019 as per Oregon Senate Bill 52 (2017) making these data useful for crash injury analysis.  These data are acquired through a data sharing agreement between OHA and ODOT Research unit.  
	OR-EMSIS data are not a replacement for the ODOT crash data since they do not go through the same rigor of quality assurance and data element construction.  However, these data contain useful information such as race of crash participant, user type (pedestrian, bicycle, motorist), home location, in addition to the incident location, which are of use to this research.  Specifically, these data can provide a clearer understanding of the home location of pedestrian relative to the location of the incident.  Ch
	To better understand the changes in the reporting of the OR-EMSIS data the chart is provided in 
	To better understand the changes in the reporting of the OR-EMSIS data the chart is provided in 
	Figure 3.1
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	 below.  The figure shows the number of injuries reported to ODOT and are grouped by fatal (K), severe (A), moderate (B) and minor (C) in represented by one line and another line that represents just fatal, sever and moderate (KAB).  The chart shows that in 2017 and 2018 the number of EMS records compared to ODOT injury counts for bicycle, pedestrian, and transit incident participants are fewer but in 2019 the recorded count of these non-driving modes nears parity and is even exceeded by the EMS data.  More

	 
	Figure
	Figure 3.1: Number of ODOT records compared to OR-EMSIS records by year 
	The location of the home and incident are included as addresses in the OR-EMSIS data and therefor need to be geocoded for spatial analysis.  Geocoding was performed on all EMS traffic incident records with a valid address, city, state, and zip code for both the home and incident locations.  For addresses within Oregon, the Department of Administrative Services (DAS) geocoding service was used which includes a complete database of addresses in Oregon.  For home addresses outside of Oregon, a third-party geoc
	For the pedestrian home and incident location analysis, only crash types that would be included in ODOT crash data are included.  Pedestrian-involved incidents were selected based on the codes detailed in 
	For the pedestrian home and incident location analysis, only crash types that would be included in ODOT crash data are included.  Pedestrian-involved incidents were selected based on the codes detailed in 
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	 and were selected based on review of codes in the National NEMSIS data standard data dictionary (NHTSA 2014).  Incidents that are removed but would include pedestrians include clips, trips and stumbles (NEMSIS codeW18.4) and any incidents including both a pedestrian and other non-motorist including bicycles since ODOT data does not consider these traffic-related incidents.   

	Table 3.2: OR-EMSIS Incident Type Codes for Pedestrian-involved Incident 
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	OR-EMSIS Incident Type Codes 

	Record Frequency 
	Record Frequency 

	% Total 
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	Pedestrian injured in collision with heavy transport vehicle or bus(V04) 
	Pedestrian injured in collision with heavy transport vehicle or bus(V04) 

	3 
	3 

	0.3% 
	0.3% 
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	Pedestrian - Collision with railway train or railway vehicle(V05.9) 
	Pedestrian - Collision with railway train or railway vehicle(V05.9) 

	5 
	5 

	0.6% 
	0.6% 
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	Pedestrian - Collision with heavy transport vehicle or bus(V04.9) 
	Pedestrian - Collision with heavy transport vehicle or bus(V04.9) 

	7 
	7 

	0.8% 
	0.8% 
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	Pedestrian injured in collision with railway train or railway vehicle(V05) 
	Pedestrian injured in collision with railway train or railway vehicle(V05) 

	7 
	7 

	0.8% 
	0.8% 
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	Pedestrian - Collision with two- or three-wheeled motor vehicle(V02.9) 
	Pedestrian - Collision with two- or three-wheeled motor vehicle(V02.9) 

	9 
	9 

	1.0% 
	1.0% 
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	Pedestrian - Collision with other non-motor vehicle(V06.9) 
	Pedestrian - Collision with other non-motor vehicle(V06.9) 

	13 
	13 

	1.5% 
	1.5% 
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	Pedestrian - Unspecified transport accident(V09.9) 
	Pedestrian - Unspecified transport accident(V09.9) 

	29 
	29 

	3.3% 
	3.3% 
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	Skateboard accident(V00.13) 
	Skateboard accident(V00.13) 

	32 
	32 

	3.6% 
	3.6% 
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	Pedestrian on foot injured in collision with car, pick-up truck or van in traffic accident, initial encounter(V03.10XA) 
	Pedestrian on foot injured in collision with car, pick-up truck or van in traffic accident, initial encounter(V03.10XA) 

	129 
	129 

	14.5% 
	14.5% 
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	Pedestrian - Collision with car, pick-up truck or van(V03.9) 
	Pedestrian - Collision with car, pick-up truck or van(V03.9) 

	183 
	183 

	20.6% 
	20.6% 
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	Pedestrian - Collision with car, pick-up truck or van - Traffic(V03.1) 
	Pedestrian - Collision with car, pick-up truck or van - Traffic(V03.1) 

	471 
	471 

	53.0% 
	53.0% 


	TR
	Span
	Total 
	Total 

	888 
	888 

	100.0% 
	100.0% 




	 
	Once all geocoding is performed and data is filtered based on incident type 888 pedestrian incidents are available for analysis.  This is close to a year’s worth of pedestrian injuries that ODOT records which averages about 965 pedestrian injuries per year.   
	3.4 CENSUS TRACT LEVEL DATA 
	A number of useful datasets for this research project will be gathered from the U.S. Census which tracks population counts and characteristics such as demographics data each year using a long form survey. Nearly 3.5 million surveys are completed each year, about 1% of the U.S. population which can be aggregated across years to derive meaningful statistical representations at smaller geographic scales with the smallest being the block group with data available for more aggregated geographies including tract,
	3.4.1 Sociodemographic Data 
	In addition to sociodemographic and job location information traffic exposure and built environment data will be utilized in the statistical analysis featured in Chapter 6.  The below 
	offers a summary of the data and calculation process used to derive the measure.  The data summarized in 
	offers a summary of the data and calculation process used to derive the measure.  The data summarized in 
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	 includes two periods of data including 2008 to 2012 and 2014 to 2018 for 520 urban area tracts.  Rural tract models were explored as a part of this research but have not been fully developed.   

	Table 3.3: Urban Area Tracts Summary Statistics  
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	Urban Tracts (n = 1040) 
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	Mean 
	Mean 
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	Fatal & Severe Injury 

	1.21 
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	1 
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	1.56 
	1.56 


	TR
	Span
	Total Injury 
	Total Injury 

	6.83 
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	Median Income (thousand) 

	58.96 
	58.96 

	54.58 
	54.58 

	24.57 
	24.57 
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	0.07 
	0.07 

	0.04 
	0.04 
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	4038 
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	1.33 
	1.33 

	1.01 
	1.01 

	1.62 
	1.62 
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	0.05 
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	0.12 
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	0.13 
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	0.1 
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	9.58 
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	12 
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	5.05 
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	2.78 
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	0.19 
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	0.09 
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	0.07 
	0.07 
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	1.11 

	1.56 
	1.56 




	 
	Fatal, severe and total pedestrian injury counts by tracts come from ODOT’s CDS crash data file.  These data are assigned to the census tract in which they are located with no manual adjustments.  For the demographic measures such as percent Black and percent Asian the total number of people in these Census categories are divided by the total population in the tract to calculate the proportion.  In the statistical modeling featured in Chapter 6 a measure of daytime population is used as an offset which enab
	(3-1) 
	Where: 
	Popt is the average daily population in tract t 
	ResPopt is the residential population in tract t 
	WorkersWACt is the number of workers working in tract t 
	WorkersRACt is the number of workers living in tract t 
	3.4.2 Built Environment and Traffic Exposure 
	Information on the VMT and roadway speeds data are derived from data maintained by ODOT’s Transportation System Monitoring Unit in the Table of Potential Samples (TOPS) dataset and are reported to the Federal Highways Administration on an annual basis through the Highway Performance Monitoring System (HPMS). These data are available at a disaggregate level for all streets with a functional classification of minor collector and above for years 2011 through 2019. Since the scale of these data is at the networ
	Information on sidewalks is derived from a database of sidewalk data that ODOT maintains for the state system and does not include non-state owned roads or adjacent sidewalks.  These measures are aggregated to the tract level based on their location within the tract with no double counting for being near a Census boundary.  Two attributes of the ODOT sidewalk system are used including the condition and whether or not the sidewalk adheres to the agency standard.  Condition is a statement of the physical cond
	 Good (G): Smooth, new pavement. Only to be used for new construction. 
	 Good (G): Smooth, new pavement. Only to be used for new construction. 
	 Good (G): Smooth, new pavement. Only to be used for new construction. 


	 Fair (F): Reasonably smooth pavement, safe to walk on. 
	 Fair (F): Reasonably smooth pavement, safe to walk on. 
	 Fair (F): Reasonably smooth pavement, safe to walk on. 

	 Poor (P): Pavement that is cracked, heaved, eroded, etc. Pavement which is dangerous to walk on or is impassable by a wheelchair or stroller. 
	 Poor (P): Pavement that is cracked, heaved, eroded, etc. Pavement which is dangerous to walk on or is impassable by a wheelchair or stroller. 


	Employment data, including worker employment location comes from the Longitudinal Employment-Household Dynamic (LEHD) program database. These data allow for assessments of employment location down to the Census block but were aggregated to the tract level for this analysis. Disaggregate measures of job type by industry and wage are available and used in the analysis featured below.  
	Data on the percent of workers that commute by walk and transit comes from the U.S. Census and is available at the block group level but for this research these measures were aggregated to the tract but otherwise used as is with no calculations.  Similarly, the number of vehicles per household was taken as is from Census for use in this analysis.  Transit stop information is derived from statewide database of General Transit Feed Specification (GTFS) based data.  The location of stops are available for the 
	Data on the percent of workers that commute by walk and transit comes from the U.S. Census and is available at the block group level but for this research these measures were aggregated to the tract but otherwise used as is with no calculations.  Similarly, the number of vehicles per household was taken as is from Census for use in this analysis.  Transit stop information is derived from statewide database of General Transit Feed Specification (GTFS) based data.  The location of stops are available for the 
	Table 3.4
	Table 3.4

	 summarizes the geocoding results below.   

	Table 3.4: Oregon Statewide OLCC Address Geocoding Results   
	Table
	TBody
	TR
	Span
	Year 
	Year 

	Address Geocode Match Result 
	Address Geocode Match Result 

	Acceptable Match % 
	Acceptable Match % 

	Total Addresses 
	Total Addresses 


	TR
	Span
	Acceptable 
	Acceptable 

	Unacceptable 
	Unacceptable 


	TR
	Span
	2008 
	2008 

	7,495 
	7,495 

	632 
	632 

	92% 
	92% 

	8,127  
	8,127  


	TR
	Span
	2009 
	2009 

	7,699 
	7,699 

	642 
	642 

	92% 
	92% 

	8,341  
	8,341  


	TR
	Span
	2010 
	2010 

	7,750 
	7,750 

	642 
	642 

	92% 
	92% 

	8,392  
	8,392  


	TR
	Span
	2011 
	2011 

	7,952 
	7,952 

	645 
	645 

	93% 
	93% 

	8,597  
	8,597  


	TR
	Span
	2012 
	2012 

	8,086 
	8,086 

	663 
	663 

	92% 
	92% 

	8,749  
	8,749  


	TR
	Span
	2013 
	2013 

	8,296 
	8,296 

	703 
	703 

	92% 
	92% 

	8,999  
	8,999  


	TR
	Span
	2014 
	2014 

	8,592 
	8,592 

	700 
	700 

	93% 
	93% 

	9,292  
	9,292  


	TR
	Span
	2015 
	2015 

	8,798 
	8,798 

	709 
	709 

	93% 
	93% 

	9,507  
	9,507  


	TR
	Span
	2016 
	2016 

	9,084 
	9,084 

	726 
	726 

	93% 
	93% 

	9,810  
	9,810  


	TR
	Span
	2017 
	2017 

	9,168 
	9,168 

	765 
	765 

	92% 
	92% 

	9,933  
	9,933  


	TR
	Span
	2018 
	2018 

	9,503 
	9,503 

	774 
	774 

	93% 
	93% 

	10,277  
	10,277  




	 
	3.5 OREGON HOUSEHOLD ACTIVITY SURVEY (OHAS) 
	The OHAS data includes 17,941 households in Oregon where all the people in the household were asked to keep a diary of all travel-related activities for an assigned 24-hour period. Travel periods were evenly distributed throughout the weekdays when school was in session and respondents were asked to complete logs by mail and telephone.  Results were compiled into a statewide database which are used to inform travel models among other descriptive uses. The survey documented daily weekday household travel pat
	3.6 USING CRASH POINTS AND CENSUS TRACT POLYGONS 
	Statistical analysis methods, described in Chapter 7, model factors associated with pedestrian crashes at the Census tract level.  One potential concerns about linking crashes (points) and tracts (polygons) is that traffic crashes occurring on the boundaries of Census tracts might present problems for subsequent analysis.  The potential issue would be that points on boundaries could be double counted or erroneously assigned to a neighboring Census tract. In order for this issue to impact the study findings,
	Analysis of the Census tract data is performed below, and demonstrates the following key findings: 
	 Assigning points on boundaries to one tract versus its neighbor likely has minimal impact due to significant autocorrelation, or the tendency of neighboring tracts to resemble one another. 
	 Assigning points on boundaries to one tract versus its neighbor likely has minimal impact due to significant autocorrelation, or the tendency of neighboring tracts to resemble one another. 
	 Assigning points on boundaries to one tract versus its neighbor likely has minimal impact due to significant autocorrelation, or the tendency of neighboring tracts to resemble one another. 

	 We have no reason to believe that there is a particular bias by which a point get assigned to a polygon, which limits the likelihood of any systematic bias being introduced into the analysis. 
	 We have no reason to believe that there is a particular bias by which a point get assigned to a polygon, which limits the likelihood of any systematic bias being introduced into the analysis. 

	 The Race, Ethnicity and Income Index method reduces the point-on-boundary issue by dissolving boundaries of many tracts creating ‘super’ polygons based on index value. 
	 The Race, Ethnicity and Income Index method reduces the point-on-boundary issue by dissolving boundaries of many tracts creating ‘super’ polygons based on index value. 


	 
	Figure
	Figure 3.2: Crash point on census boundary example 
	For all the pedestrian injury data available from ODOT’s crash data file, which includes 8,851 pedestrian crashes between the years 2008 and 2018, 60% of pedestrian injury crashes are placed farther than 5m from a Census boundary and are therefore not on any Census tract boundary while 35% are on a boundary of two tracts, 4% on a boundary of three tracts, and 1% on a boundary of four tracts (see 
	For all the pedestrian injury data available from ODOT’s crash data file, which includes 8,851 pedestrian crashes between the years 2008 and 2018, 60% of pedestrian injury crashes are placed farther than 5m from a Census boundary and are therefore not on any Census tract boundary while 35% are on a boundary of two tracts, 4% on a boundary of three tracts, and 1% on a boundary of four tracts (see 
	Table 3.5
	Table 3.5

	).  Because 40% of pedestrian injury crashes occur on a Census tract boundary the examination below is worthwhile.   

	Table 3.5: Summary of Instances that Pedestrian Injuries Fall on Census Tract Boundaries (2008-2018 Data) 
	Table
	TBody
	TR
	Span
	Intersecting Tract Boundaries 
	Intersecting Tract Boundaries 

	Records 
	Records 

	% 
	% 


	TR
	Span
	1 
	1 

	5,343  
	5,343  

	60% 
	60% 


	TR
	Span
	2 
	2 

	3,066  
	3,066  

	35% 
	35% 


	TR
	Span
	3 
	3 

	345 
	345 

	4% 
	4% 


	TR
	Span
	4 
	4 

	97 
	97 

	1% 
	1% 


	TR
	Span
	Total 
	Total 

	8,851  
	8,851  

	100% 
	100% 




	 
	There is no established literature that this report’s authors are aware of that preclude the use of joining information from polygons to points, which is standard practice in many ecological analyses.  As described in the literature review, the project team reviewed at least 20 studies that analyzed factors associated with pedestrian crashes by assigning crash points to geographic polygons (typically tracts or polygons) to explore the relationship between crashes and factors such as Census-derived populatio
	We identified another paper that looked at the potential for double counting points (traffic incidents) when the points fall on a polygon (Census tract) boundary (Curtis 2014). The author concludes: “there is no reason to question the standard GIS practice of aggregating points to polygons” but offers that the joining methods should be well-understood so that scholars are aware of the methods their technology is using to compute the results.  
	3.6.1 Spatial Autocorrelation of Census Tract Level Information 
	At the heart of the point-on-polygon boundary issue is whether bias is injected into subsequent analysis because of a miss-assignment of the point to the tract.  However, because neighbor tracts typically reflect values of the ‘home’ tract the risk of bias is low.  This concept, known as spatial autocorrelation, is a well-known phenomenon in geospatial analysis.  Spatial autocorrelation describe the existence of systemic spatial variation in a given variable (Haining 2003) and arises when adjacent observati
	present issues in statistical analysis and should be investigated though do not necessarily introduce bias (Diniz, Bini, & Hawkins, 2003).   
	We will explore autocorrelation for the Census tract data used in this research to help understand the potential of bias being introduced by assigning crash points to one tract versus a neighbor tract.  Spatial autocorrelation is computed using Moran’s I which defines the ratio between the local and the global coherence (Schmal et al. 2017; Gao et al. 2019) using the following formula:  𝑰= 𝟏 ∑𝒘𝒊𝒋(𝑿𝒊− 𝑿̅)(𝑿𝒋− 𝑿̅)𝒊𝒋∑𝒘𝒊𝒋𝑵−𝟏𝒊𝒋∑(𝒊𝑿𝒊− 𝑿̅)𝟐 
	(3-2) 
	Where: 
	N describes the number of observations locations 
	Xi and Xj are the values of observation at location i and j respectively  
	𝑋̅ describes the mean value of all observations  
	Using this formula, we find that Census tract information is spatially auto correlated for most key variables using in the analysis, meaning that tract level characteristics are typically similar to nearby tracts.  To compute spatial autocorrelation we first compute the values of the nearest neighbors for each Census tract and assign equal weight to each tract that touches the queen (noted as tracti).  For example, 
	Using this formula, we find that Census tract information is spatially auto correlated for most key variables using in the analysis, meaning that tract level characteristics are typically similar to nearby tracts.  To compute spatial autocorrelation we first compute the values of the nearest neighbors for each Census tract and assign equal weight to each tract that touches the queen (noted as tracti).  For example, 
	Figure 3.3
	Figure 3.3

	 shows how BIPOC % for select tracts are used to compute Moran’s I.  In the example, Census tract 41047001602 represents Tracti (queen tract) while the other tracts represent Tractsj.  Since we are giving equal weight to Tractsj we can simply average their BIPOC values which include 49.7%, 44.6%, 44.9%, 43.3%, and 36.4%.  The mean of these values is 43.8% which compared to 46.1% is very similar.  For Moran’s I, do this calculation for all Census tracts and the composite measure, the slope between the compos
	Figure 3.4
	Figure 3.4

	 where the spatial lag variables are compared with the queen tract (Tracti) values.  

	 
	Figure
	Figure 3.3: Example of spatial autocorrelation and Moran’s I calculation– Salem, OR urban area  
	 
	Figure
	Figure 3.4: Correlation between spatial lag and tract BIPOC % values 
	Using variables from models featured in Chapter 7 below Moran’s I is calculated for multiple sociodemographic, built environment, and traffic exposure variables and presented in 
	Using variables from models featured in Chapter 7 below Moran’s I is calculated for multiple sociodemographic, built environment, and traffic exposure variables and presented in 
	Table 3.6
	Table 3.6

	.  This summary shows a range of Moran I values from 0.107 to 0.745 with the majority of values showing significant positive autocorrelation.  Higher values indicate a greater amount of spatial autocorrelation compared to values closer to zero. 

	Table 3.6: Summary of Moran’s I Values for Select Variables 
	Table
	TBody
	TR
	Span
	Variable 
	Variable 

	Moran’s I 
	Moran’s I 


	TR
	Span
	Asian % 
	Asian % 

	0.627 
	0.627 


	TR
	Span
	Black % 
	Black % 

	0.609 
	0.609 


	TR
	Span
	Latinx % 
	Latinx % 

	0.560 
	0.560 


	TR
	Span
	BIPOC % 
	BIPOC % 

	0.521 
	0.521 


	TR
	Span
	Median Income 
	Median Income 

	0.527 
	0.527 


	TR
	Span
	Poverty % 
	Poverty % 

	0.360 
	0.360 


	TR
	Span
	Disability % 
	Disability % 

	0.556 
	0.556 


	TR
	Span
	Limited English Proficiency % 
	Limited English Proficiency % 

	0.608 
	0.608 


	TR
	Span
	VMT on Major Arterials 
	VMT on Major Arterials 

	0.107 
	0.107 


	TR
	Span
	Miles of Roadway 45 mph+ 
	Miles of Roadway 45 mph+ 

	0.541 
	0.541 


	TR
	Span
	Miles of Roadway 35 mph + 
	Miles of Roadway 35 mph + 

	0.514 
	0.514 


	TR
	Span
	Mean Arterial Width 
	Mean Arterial Width 

	0.351 
	0.351 


	TR
	Span
	Total Sidewalk Miles (ODOT System) 
	Total Sidewalk Miles (ODOT System) 

	0.589 
	0.589 


	TR
	Span
	% Households with Zero Vehicles 
	% Households with Zero Vehicles 

	0.450 
	0.450 


	TR
	Span
	Mean Transit Stops 
	Mean Transit Stops 

	0.554 
	0.554 


	TR
	Span
	% Workers Commute by Walk 
	% Workers Commute by Walk 

	0.411 
	0.411 


	TR
	Span
	% Workers Commute by Transit 
	% Workers Commute by Transit 

	0.745 
	0.745 


	TR
	Span
	Less than College Education Job Density 
	Less than College Education Job Density 

	0.703 
	0.703 


	TR
	Span
	Total Job Density 
	Total Job Density 

	0.415 
	0.415 


	TR
	Span
	Alcohol Establishment Density  
	Alcohol Establishment Density  

	0.525 
	0.525 


	TR
	Span
	Intersection Density 
	Intersection Density 

	0.684 
	0.684 


	TR
	Span
	Miles of Sidewalk in Poor Condition (ODOT System) 
	Miles of Sidewalk in Poor Condition (ODOT System) 

	0.182 
	0.182 


	TR
	Span
	Miles of Sidewalk in Substandard Condition (ODOT System) 
	Miles of Sidewalk in Substandard Condition (ODOT System) 

	0.551 
	0.551 


	TR
	Span
	Low Wage Job Density  
	Low Wage Job Density  

	0.475 
	0.475 




	 
	The implication of this autocorrelation is twofold.  First, when crash points are on a boundary of multiple Census tracts, the risk of biasing the overall analysis is low since tracts near one another typically exhibit similar values.  Second, the analysis needs to account for the presence of spatial autocorrelation otherwise standard errors may be biased giving a false assessment of precision.  More description of how this is handled is available in Chapter 7 below.   
	3.6.2 Point-on-polygon Boundary Issue with REII Analysis 
	Even if Census tracts were not auto correlated (we find that they are) and if there were a bias pushing points toward particular polygons in a systemic way that could cause bias (we don’t have reason to believe there is), analysis conducted in Chapter 5 of this study suggests that the pedestrian safety disparities could not be caused by point assignment error or bias. This section documents instances in which points are present on polygon boundaries when using the REII index approach featured in Chapter 5. 
	Even if Census tracts were not auto correlated (we find that they are) and if there were a bias pushing points toward particular polygons in a systemic way that could cause bias (we don’t have reason to believe there is), analysis conducted in Chapter 5 of this study suggests that the pedestrian safety disparities could not be caused by point assignment error or bias. This section documents instances in which points are present on polygon boundaries when using the REII index approach featured in Chapter 5. 
	Figure 3.5
	Figure 3.5

	 below.  This figure shows that index values tend to cluster into larger groups (super polygons) of similar values as exhibited by the large number of contiguous High (blue) REII tracts.   

	 
	Figure
	Figure 3.5: Example of spatial clustering of REII values – Salem, OR urban area  
	This figure also highlights how the point-on-boundary issue diminishes since points previously on Census tract boundaries are no longer on boundaries of these larger agglomerations of Census tracts.  The diminishing instances of points on polygon is further highlighted in 
	This figure also highlights how the point-on-boundary issue diminishes since points previously on Census tract boundaries are no longer on boundaries of these larger agglomerations of Census tracts.  The diminishing instances of points on polygon is further highlighted in 
	Figure 3.6
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	 below where tracts are dissolved on the REII index values.   

	 
	Figure
	Figure 3.6: Tracts dissolved by REII index value – Salem, OR urban area 
	Figure 3.6
	Figure 3.6
	Figure 3.6

	 shows the tracts dissolved by REII value to highlight how the point-on-boundary issues dissipates when these super polygons are used to aggregated pedestrian injuries as is done in Chapter 4 analysis.  Using these ‘super polygons’, for years 2008 through 2018, the number of pedestrian injuries that are located on a boundary is just 23%.  The implication of this outcome is that the uncertainty of appending a pedestrian injury point is diminished when using the REII approach.   

	Table 3.7: Summary of Instances that Pedestrian Injuries Fall on Census Tract Boundaries (2008-2018 Data) 
	Table
	TBody
	TR
	Span
	Intersecting REII Super Polygon Boundaries 
	Intersecting REII Super Polygon Boundaries 

	Records 
	Records 

	% 
	% 


	TR
	Span
	1 
	1 

	6,802 
	6,802 

	77% 
	77% 


	TR
	Span
	2 
	2 

	1,953 
	1,953 

	22% 
	22% 


	TR
	Span
	3 
	3 

	96 
	96 

	1% 
	1% 


	TR
	Span
	Total 
	Total 

	8,851 
	8,851 

	100% 
	100% 




	  
	 
	4.0 TRAVEL ANALYSIS BY RACE AND INCOME
	4.0 TRAVEL ANALYSIS BY RACE AND INCOME
	 

	This section analyzes travel behavior with a specific focus on race and income in order to provide contextual information for the crash related analysis in latter chapters.  Primary findings from this chapter include the following: 
	 People in households living at or below the poverty line travel more miles by walking compared to people living above the poverty line.   
	 People in households living at or below the poverty line travel more miles by walking compared to people living above the poverty line.   
	 People in households living at or below the poverty line travel more miles by walking compared to people living above the poverty line.   

	 People living in households classified as BIPOC travel more miles by walking than people in households classified as White.  This is likely because the average household income of BIPOC households is less than White households.   
	 People living in households classified as BIPOC travel more miles by walking than people in households classified as White.  This is likely because the average household income of BIPOC households is less than White households.   

	 People in households living at or below the poverty line travel more miles by transit compared to people living above the poverty line.   
	 People in households living at or below the poverty line travel more miles by transit compared to people living above the poverty line.   


	This travel behavior analysis uses available data from the most recent household travel survey conducted in Oregon.  The household travel survey data is derived from the 2009 to 2011 Oregon Household Activity Survey (OHAS).   
	4.1 OHAS TRAVEL ANALYSIS BY INCOME AND RACE 
	The table below summarizes by race category and poverty status the total trips and persons surveyed in the 2009-2011 OHAS travel survey and includes measures that characterize the weighted and unweighted measures of trips and person.  For all modes of travel, the weighted number of trips include 13.5 million (157,000 unweighted) trips for 3.74 million (42,208 unweighted) people.  For the state as a whole the average number of trips taken by all modes (drive, passenger, walk, transit, bike, motorcycle, etc.)
	Table 4.1: All Mode Trip Rate by Poverty Status and Race 
	Table
	TBody
	TR
	Span
	Poverty Status 
	Poverty Status 

	Aggregate Race/Ethnicity Category 
	Aggregate Race/Ethnicity Category 

	Total Trips (Expanded Survey) 
	Total Trips (Expanded Survey) 

	Trips (Unweighted) 
	Trips (Unweighted) 

	Persons (Expanded Survey) 
	Persons (Expanded Survey) 

	Persons Surveyed 
	Persons Surveyed 

	Trip Rate (Weighted) 
	Trip Rate (Weighted) 


	TR
	Span
	Above Poverty 
	Above Poverty 

	BIPOC 
	BIPOC 

	718,764  
	718,764  

	6,598  
	6,598  

	207,550  
	207,550  

	1,866  
	1,866  

	3.5 
	3.5 


	TR
	Span
	At or Below Poverty 
	At or Below Poverty 

	428,196  
	428,196  

	2,137  
	2,137  

	210,619  
	210,619  

	724  
	724  

	2.0 
	2.0 


	TR
	Span
	Refused 
	Refused 

	50,473  
	50,473  

	420  
	420  

	21,252  
	21,252  

	140  
	140  

	2.4 
	2.4 


	TR
	Span
	Statewide 
	Statewide 

	1,197,433  
	1,197,433  

	9,155  
	9,155  

	439,421  
	439,421  

	2,730  
	2,730  

	2.7 
	2.7 


	TR
	Span
	Above Poverty 
	Above Poverty 

	White 
	White 

	10,061,950  
	10,061,950  

	126,099  
	126,099  

	2,593,585  
	2,593,585  

	33,360  
	33,360  

	3.9 
	3.9 


	TR
	Span
	At or Below Poverty 
	At or Below Poverty 

	1,101,274  
	1,101,274  

	8,490  
	8,490  

	390,967  
	390,967  

	2,513  
	2,513  

	2.8 
	2.8 


	TR
	Span
	Refused 
	Refused 

	720,018  
	720,018  

	8,504  
	8,504  

	183,348  
	183,348  

	2,271  
	2,271  

	3.9 
	3.9 


	TR
	Span
	Statewide 
	Statewide 

	11,883,242  
	11,883,242  

	143,093  
	143,093  

	3,167,900  
	3,167,900  

	38,144  
	38,144  

	3.8 
	3.8 


	TR
	Span
	Above Poverty 
	Above Poverty 

	Other 
	Other 

	154,377  
	154,377  

	1,413  
	1,413  

	42,221  
	42,221  

	369  
	369  

	3.7 
	3.7 


	TR
	Span
	At or Below Poverty 
	At or Below Poverty 

	28,663  
	28,663  

	207  
	207  

	19,496  
	19,496  

	62  
	62  

	1.5 
	1.5 


	TR
	Span
	Refused 
	Refused 

	20,589  
	20,589  

	160  
	160  

	4,340  
	4,340  

	39  
	39  

	4.7 
	4.7 


	TR
	Span
	Statewide 
	Statewide 

	203,630  
	203,630  

	1,780  
	1,780  

	66,057  
	66,057  

	470  
	470  

	3.1 
	3.1 


	TR
	Span
	Above Poverty 
	Above Poverty 

	Refused 
	Refused 

	166,840  
	166,840  

	2,401  
	2,401  

	47,515  
	47,515  

	655  
	655  

	3.5 
	3.5 


	TR
	Span
	At or Below Poverty 
	At or Below Poverty 

	49,375  
	49,375  

	213  
	213  

	12,036  
	12,036  

	64  
	64  

	4.1 
	4.1 


	TR
	Span
	Refused 
	Refused 

	46,761  
	46,761  

	540  
	540  

	11,552  
	11,552  

	145  
	145  

	4.1 
	4.1 


	TR
	Span
	Statewide 
	Statewide 

	262,976  
	262,976  

	3,154  
	3,154  

	71,103  
	71,103  

	864  
	864  

	3.7 
	3.7 


	TR
	Span
	Above Poverty 
	Above Poverty 

	Statewide 
	Statewide 

	11,101,931  
	11,101,931  

	136,511  
	136,511  

	2,890,872  
	2,890,872  

	36,250  
	36,250  

	3.8 
	3.8 


	TR
	Span
	At or Below Poverty 
	At or Below Poverty 

	1,607,508  
	1,607,508  

	11,047  
	11,047  

	633,118  
	633,118  

	3,363  
	3,363  

	2.5 
	2.5 


	TR
	Span
	Refused 
	Refused 

	837,841  
	837,841  

	9,624  
	9,624  

	220,493  
	220,493  

	2,595  
	2,595  

	3.8 
	3.8 


	TR
	Span
	Total 
	Total 

	13,547,280 
	13,547,280 

	157,182 
	157,182 

	3,744,483 
	3,744,483 

	42,208 
	42,208 

	3.6 
	3.6 




	 
	 
	The figure below uses the OHAS travel survey data to calculate miles of travel by select modes.  These per capita miles of travel by mode are broken out by poverty status of the household.  
	The figure below uses the OHAS travel survey data to calculate miles of travel by select modes.  These per capita miles of travel by mode are broken out by poverty status of the household.  
	Figure 4.1: 
	Figure 4.1: 

	Figure 4.1
	 shows that for people living in poverty, there average weekday miles of travel as a pedestrian is 0.18 miles compared to 0.12 miles for people living above the poverty line.  Transit use is also higher for people living in poverty with average weekday per capita miles of travel of 0.8 miles compared to 0.47 for people living above the poverty line.  Conversely, people living in poverty drive less with just 6.3 miles per person compared to 16.8 miles for people living above the poverty line.   

	 
	Figure
	Figure 4.1: Miles of travel by poverty status for select modes 
	Figure 4.2
	Figure 4.2
	Figure 4.2

	 below summarizes per capita travel by select modes by race category including White and BIPOC.  Because BIPOC households were more likely to be lower income than White households ($48,000 vs. $54,000) the figure above reflects similar outcomes shown in 
	Figure 4.1
	Figure 4.1

	.  In 
	Figure 4.2
	Figure 4.2

	 people living in a household designated as BIPOC walked 0.17 miles compared to 0.12 miles for survey respondents in households that are White.  Miles of travel by transit also showed some difference with people in BIPOC households traveling 0.57 miles compared to 0.52 for people in White households. This figure also shows the miles of travel by driving displaying 8.3 miles of per capita travel for people living in BIPOC households compared to 16 miles of driving per person in households classified as White

	 
	Figure
	Figure 4.2: Per capita travel by race category 
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	 below shows per capita miles of travel for select modes broken out by both poverty status and race category.  Because of the intersection of poverty and race this chart attempts to show how even after controlling for poverty status some travel behavior differences persist.  For walk miles of travel, BIPOC households living at or below the poverty line travel 0.22 miles of travel per person compared to 0.17 miles per person for households that are classified as White.  Both of these measures of walk miles a

	 
	Figure
	Figure 4.3: Per capita miles of travel by poverty status and race category 
	4.2 OHAS TRAVEL ANALYSIS SUMMARY 
	Figures presented in this chapter highlight the increased pedestrian exposure faced by low income people and BIPOC populations.  Income is a significant predictor of walk miles but there is some residual differences even after controlling for poverty as shown in 
	Figures presented in this chapter highlight the increased pedestrian exposure faced by low income people and BIPOC populations.  Income is a significant predictor of walk miles but there is some residual differences even after controlling for poverty as shown in 
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	 though income is certainly the main effect.  Transit usage by race category showed no significant difference but instead is primarily a function of poverty status.  These findings should inform findings documented in Chapters 4 and 7 where disparities of pedestrian injuries shown to exist based on race and income.  It is logical to conclude that people who walk more are more likely to be involved in a pedestrian traffic incident, all else being equal.  Transit miles are a related exposure considering many 

	  
	 
	5.0 FATAL ACCIDENT REPORTING SYSTEM (FARS) ANALYSIS
	5.0 FATAL ACCIDENT REPORTING SYSTEM (FARS) ANALYSIS
	 

	This section details analysis of the Fatal Accident Reporting data in order to understand fatal pedestrian injury rates by race.   A summary of findings in this chapter include: 
	 Pedestrian injury rates for the most recent period of data show that Black, Indigenous and People of Color (BIPOC) experience a higher burden of pedestrian injury compared to the state average.  (2.8 deaths per 100K for BIPOC compared to 2.1 deaths per 100K for all people in Oregon ) 
	 Pedestrian injury rates for the most recent period of data show that Black, Indigenous and People of Color (BIPOC) experience a higher burden of pedestrian injury compared to the state average.  (2.8 deaths per 100K for BIPOC compared to 2.1 deaths per 100K for all people in Oregon ) 
	 Pedestrian injury rates for the most recent period of data show that Black, Indigenous and People of Color (BIPOC) experience a higher burden of pedestrian injury compared to the state average.  (2.8 deaths per 100K for BIPOC compared to 2.1 deaths per 100K for all people in Oregon ) 

	 In the most recent period of data, Black people experience the highest rate of pedestrian injury followed by American Indian and Alaskan Native, Latinx, and Asian. 
	 In the most recent period of data, Black people experience the highest rate of pedestrian injury followed by American Indian and Alaskan Native, Latinx, and Asian. 

	 Pedestrian injury disparities vary over time with earlier periods of data exhibiting smaller disparities between BIPOC populations and the state average. 
	 Pedestrian injury disparities vary over time with earlier periods of data exhibiting smaller disparities between BIPOC populations and the state average. 


	5.1 FATAL INJURY RATES CALCULATION METHODS 
	These data are the only data that directly measure the race of the pedestrian involved in a fatal crash and when paired with population data from Census are valuable to understand disparate injury outcomes.  Fatal injury burden is measured using age-adjusted rates (Anderson & Rosenberg 1998) and is calculated using the counts of fatal injuries combined with population counts of people by age cohort for each race adjusted by using the US population as the standard population.  Age-adjusted rates are importan
	𝑫𝑵= ∑𝒅𝒊𝑵= ∑𝒏𝒊 (𝒅𝒊/𝒏𝒊)𝑵 = ∑(𝒏𝒊 /𝑵)(𝒅𝒊/𝒏𝒊)=∑𝒘𝒊(𝒅𝒊/𝒏𝒊)  
	(5-1) 
	Where: 
	D = deaths (fatally injured pedestrians) 
	N = population (Oregon) 
	i = age-stratum  
	di = age-stratum specific deaths 
	ni = age-stratum specific population     
	wi = weights from standard population 
	These calculations are equivalent but when comparing Oregon-specific rates to other states for instance, the age-adjusted result should be used to account for age differences in the populations being compared.  The results reported in this chapter present rates using person years which uses the total population over multiple years as opposed to the population for any one year.  This principle of epidemiology aims to more accurately capture the time people are exposed to a given disease or health outcome, in
	Since most of Oregon’s population is white, the number of pedestrians in BIPOC categories can be small for some time periods so rates are an important normalizer to help understand disparate outcomes.  This research utilizes guidance that Oregon Health Authority’s Health Promotion and Chronic Disease Prevention unit developed titled Guidelines for Reporting Reliable Numbers (2018).  This guidance recommends that for individual strata at least 12 observations are available to report without a notice of cauti
	Age-adjusted population-based rates are a measure of the burden on the population of a given health outcome, in this case the burden of fatal pedestrian traffic injury.  Using FARS pedestrian injuries and population data from the Census for each age cohort, these rates can be calculated to understand whether disparities exist based on race.  In addition to the age-adjusted rates, margins of error are presented which describe the confidence intervals of the fatal injury rates.  Confidence intervals are measu
	5.2 FATAL INJURY RATES BY RACE CATEGORY 
	The results presented in 
	The results presented in 
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	 document the five-year fatal injury rates and highlight the disparate pedestrian fatal injury outcomes of BIPOC populations, with Black people facing the 

	highest disparities in this period of data with 4.7 pedestrian fatalities per 100,000 people.  Native Hawaiian and Pacific Islander (NHPI) people have a high rate but the low number of fatalities and base population results in a statistically unreliable rate.  The next highest rate is for American Indian and Alaskan Native (AIAN) followed by Latinx and then Asian people with 3, 2.7, and 2.4 pedestrian fatal injuries per 100,000 people respectively.  An aggregate rate was also calculated that aggregates all 
	 
	Figure
	Figure 5.1: Age-adjusted fatal injury rates per 100,000 people 2014-2018 
	Though the rates show a significant disparity in the most recent data these rates vary over time.  
	Though the rates show a significant disparity in the most recent data these rates vary over time.  
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	 below shows two five-year periods including the years from 2009 to 2013 and 2014 to 2018.  The mid-point for the rate is shown as text in the chart for clarity.  American Indian and Alaskan Native populations exhibit a higher burden of pedestrian death in both periods with the disparity shrinking between periods.  The pedestrian fatal injury rate for Asian populations was slightly lower (though not significantly) than the state average in the first period but increased in the second period to be higher tha

	but then increases in the second period to be 15% higher in the latter period.  The rate for White populations slightly lower than the state average in the first period with the difference growing into the second period.   
	 
	Figure
	Figure 5.2: Age-adjusted fatal injury rates per 100,000 people over time 
	 
	6.0 RACE, ETHNICITY AND INCOME INDEX ANALYSIS 
	6.0 RACE, ETHNICITY AND INCOME INDEX ANALYSIS 
	 

	This section uses a social vulnerability index to assess whether areas with higher proportions of low-income and / or BIPOC residents are subject to higher levels of pedestrian injury and fatality. The analysis also looks at whether these areas have differing built environment or traffic characteristics, such as higher speed and volume arterials, that are associated with pedestrian crashes. Key findings in this chapter include: 
	 Some Census tracts have significantly higher rates of poverty and BIPOC population 
	 Some Census tracts have significantly higher rates of poverty and BIPOC population 
	 Some Census tracts have significantly higher rates of poverty and BIPOC population 

	 Tracts with higher concentrations of poverty and BIPOC populations experience higher rates of pedestrian fatal and severe injury.   
	 Tracts with higher concentrations of poverty and BIPOC populations experience higher rates of pedestrian fatal and severe injury.   

	 Tracts categorized as High represent 25% of the state’s population (1.002 million people) but 40% of the fatal and severe injuries and 45% of the total pedestrian injuries. 
	 Tracts categorized as High represent 25% of the state’s population (1.002 million people) but 40% of the fatal and severe injuries and 45% of the total pedestrian injuries. 

	 The rates of pedestrian injury in tracts classified as Moderate and High have increased by 18% and 13% compared to 1% and 7% for tracts classified as Lowest and Low poverty and BIPOC population.   
	 The rates of pedestrian injury in tracts classified as Moderate and High have increased by 18% and 13% compared to 1% and 7% for tracts classified as Lowest and Low poverty and BIPOC population.   


	Many versions of composite indices exist that collapse multiple factors into a single index value with an aim to simply measures of social disadvantage or social vulnerability.  The Centers for Disease Control (CDC) have constructed a Social Vulnerability Index (SVI) that employs 14 variables from the Census including proportion of people 17 years of age and below, people 65 years of age and above, single parent households with children 17 years of age and below, racial/ethnic minorities, and people living 
	The variables are used in the Race/Ethnicity and Income Index (REII) for this work and include the following measure: 
	 Poverty Rate - Percent of the population living at or below the poverty line 
	 Poverty Rate - Percent of the population living at or below the poverty line 
	 Poverty Rate - Percent of the population living at or below the poverty line 

	 BIPOC % - Percentage of the population that are American Indian or Alaskan Native, Asian, Black, non-White Hispanic, and Native Hawaiian or Pacific Islander 
	 BIPOC % - Percentage of the population that are American Indian or Alaskan Native, Asian, Black, non-White Hispanic, and Native Hawaiian or Pacific Islander 


	These population factors are used to calculate z-scores, or standardized scores to determine if the given measure is higher or lower relative to the mean of that value, in the case the statewide average.  Z-scores are helpful tools for locating individual observations that differ significantly from the mean.  Z-scores are based off of population metrics, meaning they represent where a particular value falls relative to the entire population, not the sample of interest. A positive Z-
	score means that a particular corresponding raw score fell above the population mean or average. A negative Z-score represents a raw score that falls below the population mean. The numerical value of the Z-score is actually the number of standard deviations above or below the mean, depending on the sign of the score. A Z-score in the middle of the normal distribution has a mean of 0 and a standard deviation of 0, meaning that the score falls in the exact center of the normal distribution (Frey 2018).  Becau
	(6-1) 
	Where: 
	Z is the standardized score for tract I for REII measure d   
	x is the REII  measure for tract I for element d 
	μ is the average statewide value of REII measure d 
	σ is the standard deviation of the REII measure  d 
	The index represents the composite score of the combined metrics by adding each z-score together.  The resulting index measure shows how the select measures compare relative to the mean of the population (the state average).  Based on the number of standard deviations from the mean, these composite index values are then grouped into lowest, low, moderate, and high social vulnerability based on their distance from the mean.  For this research the thresholds for the low and moderate category were set slightly
	The index represents the composite score of the combined metrics by adding each z-score together.  The resulting index measure shows how the select measures compare relative to the mean of the population (the state average).  Based on the number of standard deviations from the mean, these composite index values are then grouped into lowest, low, moderate, and high social vulnerability based on their distance from the mean.  For this research the thresholds for the low and moderate category were set slightly
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	 shows where those cut points fall and how many census tracts are included in each of the REII categories.   

	 
	Figure
	Figure 6.1: Distribution of composite Z-scores for social vulnerability index 2014-2018 data 
	Using the REII to categorize Census tracts in this way simply reveals where there are concentrations of people above and below the state average for the selected socio-demographics.  Using these categories, relevant injury, travel, and built environment measures are summarized in 
	Using the REII to categorize Census tracts in this way simply reveals where there are concentrations of people above and below the state average for the selected socio-demographics.  Using these categories, relevant injury, travel, and built environment measures are summarized in 
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	 and shows how the REII elements relate to the overall categories.  For instance, in the lowest REII category the average percentage of the population living in poverty, for all the tracts included in this REII category, is 8% while the average for the tracts designated as low, moderate, and high is 12%, 15% and 23% respectively.  Compared to the statewide average poverty rate of 14% it is simple to see how the Z-score method uses the various data elements to categorize the tracts.  For the BIPOC percentage

	Table 6.1: Race/Ethnicity & Income Index Measures and Related Metrics Summary 
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	Pedestrian injury data and data summarizing the travel and built environment of the tracts are also summarized in 
	Pedestrian injury data and data summarizing the travel and built environment of the tracts are also summarized in 
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	.  Fatal and severe pedestrian injuries, as well as all injuries, are included. Even though only 25% of the total state population lives in the tracts designated as High in the REII, 40% of the fatal and severe injuries and 45% of the total pedestrian injuries occur in those tracts.  These pedestrian injury outcomes are also expressed as a rate normalized by the total population in the tract.   These rates show that for both injury categories (fatal & severe/ all injuries) rates are significantly higher in 

	The travel and built environment data summaries shed some light as to why these disparities in pedestrian injury outcomes may be occurring.  Arterial vehicle miles traveled (VMT) density and miles of roadway with a posted speed limits of 45 miles per hour (MPH) or greater are shown in order to describe the vehicle travel exposure that people living and working in these tracts experience.  The arterial VMT density is significantly higher in the tracts classified as High in 
	the REII compared to the Lowest and Low REII categories and also higher than the statewide average.  The number of miles high speed roadway is also higher in the Moderate and High REII tracts compared the Lowest and Low tracts.  Together these measure of VMT and speed suggest that tracts designated as Moderate and High in the REII experience more arterial VMT and that VMT is typically higher speed compared to tracts in the other REII categories.   
	Other ecological studies we reviewed for the literature review confirm that areas with more arterial roads, higher speeds, and higher volumes are associated with more and higher severity pedestrian crashes. Six studies looked at the miles or proportion of arterial roads. Four found that higher proportions of arterials (Wier et al 2009), or more miles of arterial roads (Abdel -Aty et al 2013; Dumbaugh and Li 2010; Guerra et al 2019), were associated with more pedestrian crashes. Two others found that higher 
	The number of transit stops, percent of households without a vehicle, and the percentage of workers using walk, bike, and transit to commute to work are summarized by REII in 
	The number of transit stops, percent of households without a vehicle, and the percentage of workers using walk, bike, and transit to commute to work are summarized by REII in 
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	 to demonstrate that people living and working in these tracts are more exposed to the high volume, high speed traffic conditions.  The number of transit stops is nearly double the state average in tracts designated as high in the REII, as and nearly four times higher than in tracts classified as Lowest in the REII.  Additionally, 16.3% of workers in tracts classified as High in the REII commute to work by walking, biking or using transit compared to just 5.8% in the lowest category and 10.5% statewide.  La

	A key objective of this research seeks to know if pedestrian injury disparities are growing or shrinking.  In order to measure these outcome changes over time, we use the REII approach to compare two separate period of data, including the 2008 to 2012 five-year period and the 2014 to 2018 five-year time period.  Population based injury rates are calculated for each REII category the fatal and severe injury rates are shown in 
	A key objective of this research seeks to know if pedestrian injury disparities are growing or shrinking.  In order to measure these outcome changes over time, we use the REII approach to compare two separate period of data, including the 2008 to 2012 five-year period and the 2014 to 2018 five-year time period.  Population based injury rates are calculated for each REII category the fatal and severe injury rates are shown in 
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	 while the total pedestrian injury rates are shown in 
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	.   

	 
	Figure
	Figure 6.2: Pedestrian fatal & severe injury rate period comparison 
	 
	Figure
	Figure 6.3: Pedestrian total injury rate period comparison 
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	 and 
	Figure 6.3
	Figure 6.3

	 show that for all REII categories, and for both injury severity categories, the injury rate has increased over the two time periods.  The rate of increase has not been equal across REII categories however, with the fatal and severe injury rate increasing by 14% in the High REII while the Lowest REII category only increased by 2%.  For the total injury rate the tracts categorized as High REII increased by 18% while the Lowest REII tracts only increased by 8%.  So even though the pedestrian injury rate grew 

	The analysis featured in this section informs the analysis in Chapter 7.0 that will use a variety of statistical analysis tools to better capture the effects of built environment, traffic exposure, race, ethnicity, and income on pedestrian injury outcomes.  The results presented above show that tracts with higher concentrations of people of color and low-income people have higher rates of pedestrian injuries for all injury severities.  Likely contributors to these disparate outcomes are that BIPOC communiti
	 
	7.0 OREGON EMERGENCY MEDICAL SERVICES INFORMATION SYSTEMS (OR-EMSIS) ANALYSIS
	7.0 OREGON EMERGENCY MEDICAL SERVICES INFORMATION SYSTEMS (OR-EMSIS) ANALYSIS
	 

	This chapter utilizes traffic crash incident data collected by Emergency Medical System (EMS) providers in Oregon to understand pedestrian incidents and the dynamics between home and incident location.  Key findings in this chapter include: 
	 Based on Oregon EMS traffic incident data, half of pedestrian incidents occurred within 1.06 miles from the crash participants home. This result is consistent with past findings in Hass et al (2015) and Anderson et al. (2012). 
	 Based on Oregon EMS traffic incident data, half of pedestrian incidents occurred within 1.06 miles from the crash participants home. This result is consistent with past findings in Hass et al (2015) and Anderson et al. (2012). 
	 Based on Oregon EMS traffic incident data, half of pedestrian incidents occurred within 1.06 miles from the crash participants home. This result is consistent with past findings in Hass et al (2015) and Anderson et al. (2012). 

	 Half of pedestrians 15 years of age or younger are involved in a traffic related incident within 0.32 miles from their home 
	 Half of pedestrians 15 years of age or younger are involved in a traffic related incident within 0.32 miles from their home 

	 Half of pedestrians 65 years of age or older are involved in a traffic related incident within 0.82 miles from their home 
	 Half of pedestrians 65 years of age or older are involved in a traffic related incident within 0.82 miles from their home 

	 Based on the Oregon EMS traffic incident data, 60% of pedestrian incidents occur within their home tract (38%) or a neighboring tract (22%). 
	 Based on the Oregon EMS traffic incident data, 60% of pedestrian incidents occur within their home tract (38%) or a neighboring tract (22%). 

	 For pedestrians that live in a Census tract with high poverty and concentration of BIPOC population, 70% are struck in a tract that is also high poverty and high BIPOC concentration.   
	 For pedestrians that live in a Census tract with high poverty and concentration of BIPOC population, 70% are struck in a tract that is also high poverty and high BIPOC concentration.   


	These data are reported to a centralized database called Oregon Emergency Medical Service Information System (OREMSIS).  These data represent a sample of the crashes since it doesn’t represent the universe of crash data in Oregon.  However, since these data include the home address of the crash participant they are useful data for answering questions about the distance from home that pedestrian injuries occur and the likelihood that a pedestrian injury participant is injured in their home tract, a neighbori
	7.1 DISTANCE BETWEEN HOME AND INCIDENT LOCATION  
	The OR-EMSIS data include 9,278 records that have reliable incident and home location information to use in the analysis featured in this chapter.  These include 888 records where the traffic incident participant was a pedestrian which comprises 12.3% of the total EMS records.  These incidents occurred in the years 2017 through 2019.  The distance between the incident and the home location are calculated using the Euclidean distance and is presented in miles.  Incidents from crash participants that lived ou
	The OR-EMSIS data include 9,278 records that have reliable incident and home location information to use in the analysis featured in this chapter.  These include 888 records where the traffic incident participant was a pedestrian which comprises 12.3% of the total EMS records.  These incidents occurred in the years 2017 through 2019.  The distance between the incident and the home location are calculated using the Euclidean distance and is presented in miles.  Incidents from crash participants that lived ou
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	 below to show how this calculation process looks spatially.  

	 
	Figure
	Figure 7.1: Incident and home locations for pedestrian incident participants – Salem, OR urban area 
	Using these calculated distances for all modes the table below summarizes the distance from that incidents occur for each mode included in the dataset.  For pedestrian participants the median distance from home is 1.0 miles meaning that half of all pedestrians in these data are injured 1.06 miles from their home.  This result is similar to what past research has found where one study (Haas et al., 2015) found that half of pedestrian injuries occur within 1.1 miles from the victims home, while another (Ander
	Table 7.1: Summary Statistics for Incident Distance from Home by User Type 
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	As was noted in Anderson et al. (2012), the distance from home varies by age of traffic incident participant.  The distance between home and incident location by age of incident participant is summarized in 
	As was noted in Anderson et al. (2012), the distance from home varies by age of traffic incident participant.  The distance between home and incident location by age of incident participant is summarized in 
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	.  This table shows that for people ages 15 and under, half of all crash participants are involved in an incident within 0.3 miles from home while 16-24 year olds are higher with median distance of 1.45 miles.  The next age group, 25-64 the median distance is 1.2 miles and for seniors aged 65 and older 0.8 miles. 

	Table 7.2: Summary Statistics for Incident Distance from Home by Age for Pedestrian Users 
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	The last summary of the home and incident location distance data is presented in 
	The last summary of the home and incident location distance data is presented in 
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	 and shows the summary statistics for urban areas that recorded at least 10 participants.  This table also includes participants with home locations outside Oregon urban areas and are titled ‘Rural/Non-Oregon Home’ in the table below.  These records are for Bend has the shortest median distance of 0.02 and 3rd quartile distance of 0.90 miles while Salem has the longest median distance of 1.52 miles.  The participants living in rural areas have the longest distances from home of 3.85 miles with significantly

	Table 7.3: Summary Statistics for Incident Distance from Home by Urban Area  
	Table
	TBody
	TR
	Span
	Home Urban Area 
	Home Urban Area 

	Records 
	Records 

	  
	  

	  
	  

	Distance Summary 
	Distance Summary 

	  
	  

	  
	  


	TR
	Span
	1st Quartile 
	1st Quartile 

	Median 
	Median 

	3rd Quartile 
	3rd Quartile 

	Mean 
	Mean 

	Max 
	Max 

	Std. Dev.  
	Std. Dev.  


	TR
	Span
	Albany 
	Albany 

	12 
	12 

	0.00 
	0.00 

	0.24 
	0.24 

	0.60 
	0.60 

	1.0 
	1.0 

	7.71 
	7.71 

	2.19 
	2.19 


	TR
	Span
	Bend 
	Bend 

	16 
	16 

	0.00 
	0.00 

	0.02 
	0.02 

	0.90 
	0.90 

	1.3 
	1.3 

	15.5 
	15.5 

	3.82 
	3.82 


	TR
	Span
	Corvallis 
	Corvallis 

	11 
	11 

	0.38 
	0.38 

	0.99 
	0.99 

	2.27 
	2.27 

	7.3 
	7.3 

	68.1 
	68.1 

	20.2 
	20.2 


	TR
	Span
	Eugene 
	Eugene 

	19 
	19 

	0.08 
	0.08 

	1.25 
	1.25 

	2.84 
	2.84 

	4.5 
	4.5 

	48.8 
	48.8 

	11.1 
	11.1 


	TR
	Span
	Grants Pass 
	Grants Pass 

	30 
	30 

	0.25 
	0.25 

	0.46 
	0.46 

	1.33 
	1.33 

	1.0 
	1.0 

	8.03 
	8.03 

	1.55 
	1.55 


	TR
	Span
	Hermiston 
	Hermiston 

	11 
	11 

	0.50 
	0.50 

	0.93 
	0.93 

	3.46 
	3.46 

	5.5 
	5.5 

	42.7 
	42.7 

	12.5 
	12.5 


	TR
	Span
	Medford 
	Medford 

	26 
	26 

	0.00 
	0.00 

	0.86 
	0.86 

	2.64 
	2.64 

	12.2 
	12.2 

	156 
	156 

	36.2 
	36.2 


	TR
	Span
	Portland 
	Portland 

	475 
	475 

	0.12 
	0.12 

	1.10 
	1.10 

	3.93 
	3.93 

	4.6 
	4.6 

	193 
	193 

	15.7 
	15.7 


	TR
	Span
	Redmond 
	Redmond 

	11 
	11 

	0.54 
	0.54 

	1.29 
	1.29 

	4.70 
	4.70 

	4.3 
	4.3 

	18.1 
	18.1 

	6.16 
	6.16 


	TR
	Span
	Salem 
	Salem 

	47 
	47 

	0.31 
	0.31 

	1.52 
	1.52 

	5.15 
	5.15 

	11.6 
	11.6 

	174 
	174 

	29.8 
	29.8 


	TR
	Span
	Rural/Non-Oregon  
	Rural/Non-Oregon  

	96 
	96 

	0.11 
	0.11 

	3.85 
	3.85 

	14.9 
	14.9 

	44.4 
	44.4 

	1,760  
	1,760  

	211 
	211 


	TR
	Span
	All Pedestrians 
	All Pedestrians 

	888 
	888 

	0.12 
	0.12 

	1.06 
	1.06 

	4.6 
	4.6 

	34.5 
	34.5 

	2,710 
	2,710 

	211 
	211 




	 
	7.2 TRACT TO TRACT ANALYSIS - HOME AND INCIDENT LOCATION DETAILS 
	The ability to know the home and incident location also allows for understanding how often people are involved in a crash in their tract in which they reside or a tract that they don’t reside in but is nearby.  With half of all pedestrian injuries occurring within 1.0 miles from home it would be expected that many injuries happen in a neighbor tract.  The table below shows that for the 888 pedestrian incident participants, 38% are injured in their home tract and 60% are injured in their home tract or a neig
	Table 7.4: Summary of Tract Location of Incident 
	Table
	TBody
	TR
	Span
	User Type 
	User Type 

	Incident in Home Tract 
	Incident in Home Tract 

	Incident in Tract Neighboring Home Tract 
	Incident in Tract Neighboring Home Tract 

	Incident in Home Tract or Tract Neighboring Home Tract 
	Incident in Home Tract or Tract Neighboring Home Tract 

	Total Incidents 
	Total Incidents 


	TR
	Span

	TR
	Span
	Count 
	Count 

	%  
	%  

	Count 
	Count 

	%  
	%  

	Count 
	Count 

	%  
	%  


	TR
	Span
	ATV 
	ATV 

	171 
	171 

	33% 
	33% 

	82 
	82 

	16% 
	16% 

	172 
	172 

	48% 
	48% 

	523 
	523 


	TR
	Span
	Bike 
	Bike 

	239 
	239 

	32% 
	32% 

	148 
	148 

	20% 
	20% 

	241 
	241 

	53% 
	53% 

	738 
	738 


	TR
	Span
	Heavy vehicle 
	Heavy vehicle 

	9 
	9 

	23% 
	23% 

	4 
	4 

	10% 
	10% 

	9 
	9 

	33% 
	33% 

	40 
	40 


	TR
	Span
	Motorcycle 
	Motorcycle 

	122 
	122 

	20% 
	20% 

	121 
	121 

	20% 
	20% 

	122 
	122 

	39% 
	39% 

	617 
	617 


	TR
	Span
	Pedestrian 
	Pedestrian 

	336 
	336 

	38% 
	38% 

	198 
	198 

	22% 
	22% 

	350 
	350 

	60% 
	60% 

	888 
	888 


	TR
	Span
	Transit 
	Transit 

	16 
	16 

	39% 
	39% 

	9 
	9 

	22% 
	22% 

	16 
	16 

	58% 
	58% 

	41 
	41 


	TR
	Span
	Vehicle 
	Vehicle 

	1,116 
	1,116 

	25% 
	25% 

	1,112 
	1,112 

	25% 
	25% 

	1,130 
	1,130 

	50% 
	50% 

	4502 
	4502 




	 
	The Census tract for the home and incident location is obtained by spatially overlaying the 2010 Census tract boundaries for Oregon.  In order to highlight how the tracts classified in the REII Index form groups of tracts within the same category which then makes people residing in any one designation likely to be in a similar index value when involved in an EMS report traffic incident.  The table shows that of the 835 pedestrian EMS incidents 318, or 37%. These results are similar to those presented in Cha
	The strength of the data summary below is to show what the REII designation is for the home and incident tract.  We would expect that because half of pedestrians are injured within 1.0 miles of their home and the REII index tracts cluster spatially there would be more similarity between home REII and incident REII values.  
	The strength of the data summary below is to show what the REII designation is for the home and incident tract.  We would expect that because half of pedestrians are injured within 1.0 miles of their home and the REII index tracts cluster spatially there would be more similarity between home REII and incident REII values.  
	Table 7.5
	Table 7.5

	 shows that the most common home and incident tract pair is to live in a home tract with high poverty and BIPOC and to be struck in a tract with High REII index value tract with 26% of the total 854 incidents.  In fact, of the 318 incidents in tracts classified as High, 223, or 70% had both lived in a home tract that is classified as High and were struck in a census tract classified as High by the REII Index.  The next highest home and tract combination is Moderate home and Moderate Incident location with 1

	The other categories show a strong tendency toward being struck in a tract that is similarly designated as the home tract.  Of the pedestrian incidents in tracts classifies as Lowest (8% Poverty & 10% BIPOC), 55% occurred in tracts classified as Lowest while for pedestrian incidents in tracts classified as Low (12% Poverty & 16% BIPOC), 56% also live in a tract classified as Low.    
	Table 7.5: Summary of REII Index Value of Home and Incident Location  
	Table
	TBody
	TR
	Span
	Race. Ethnicity & Income Index 
	Race. Ethnicity & Income Index 

	Count 
	Count 

	% of Total incidents 
	% of Total incidents 

	% of Home Tract Total 
	% of Home Tract Total 

	Total for REII Index  
	Total for REII Index  


	TR
	Span
	Home Tract 
	Home Tract 

	Incident Tract 
	Incident Tract 


	TR
	Span
	TD
	Span
	Lowest 

	TD
	Span
	Lowest 

	TD
	Span
	88 

	TD
	Span
	10% 

	TD
	Span
	55% 

	159 
	159 


	TR
	Span
	TD
	Span
	Low 

	TD
	Span
	26 

	TD
	Span
	3% 

	TD
	Span
	16% 


	TR
	Span
	TD
	Span
	Moderate 

	TD
	Span
	19 

	TD
	Span
	2% 

	TD
	Span
	12% 


	TR
	Span
	TD
	Span
	High 

	TD
	Span
	26 

	TD
	Span
	3% 

	TD
	Span
	16% 


	TR
	Span
	TD
	Span
	Low 

	TD
	Span
	Lowest 

	TD
	Span
	15 

	TD
	Span
	2% 

	TD
	Span
	9% 

	174 
	174 


	TR
	Span
	TD
	Span
	Low 

	TD
	Span
	98 

	TD
	Span
	11% 

	TD
	Span
	56% 


	TR
	Span
	TD
	Span
	Moderate 

	TD
	Span
	22 

	TD
	Span
	3% 

	TD
	Span
	13% 


	TR
	Span
	TD
	Span
	High 

	TD
	Span
	39 

	TD
	Span
	5% 

	TD
	Span
	22% 


	TR
	Span
	TD
	Span
	Moderate 

	TD
	Span
	Lowest 

	TD
	Span
	20 

	TD
	Span
	2% 

	TD
	Span
	10% 

	203 
	203 


	TR
	Span
	TD
	Span
	Low 

	TD
	Span
	29 

	TD
	Span
	3% 

	TD
	Span
	14% 


	TR
	Span
	TD
	Span
	Moderate 

	TD
	Span
	109 

	TD
	Span
	13% 

	TD
	Span
	54% 


	TR
	Span
	TD
	Span
	High 

	TD
	Span
	45 

	TD
	Span
	5% 

	TD
	Span
	22% 


	TR
	Span
	TD
	Span
	High 

	TD
	Span
	Lowest 

	TD
	Span
	18 

	TD
	Span
	2% 

	TD
	Span
	6% 

	318 
	318 


	TR
	Span
	TD
	Span
	Low 

	TD
	Span
	25 

	TD
	Span
	3% 

	TD
	Span
	8% 


	TR
	Span
	TD
	Span
	Moderate 

	TD
	Span
	52 

	TD
	Span
	6% 

	TD
	Span
	16% 


	TR
	Span
	TD
	Span
	High 

	TD
	Span
	223 

	TD
	Span
	26% 

	TD
	Span
	70% 




	 
	The chart in 
	The chart in 
	Figure 7.2
	Figure 7.2

	 attempts to represent the frequency of the home and incident tract REII pairs.  This figure shows for instance, how many of the 854 EMS pedestrian incidents have participants that reside in tracts classified as High (Poverty and BIPOC) and are involved in an incident in a tract classified as High.  As described in the table above, 223 pedestrian incidents have a participant that resides in a census tract classified as High and are involved in an incident where the tract is classified as High.   

	 
	Figure
	Figure 7.2: Matrix of home and incident location REII index values  
	7.3 OR-EMSIS DATA ANALYSIS DISCUSSION 
	This chapter is meant to address questions that TAC members have raised about the relationship between the home and incident locations of pedestrian injury participants.  These questions include: 
	 What is the typical distance from home that pedestrian incidents occur? 
	 What is the typical distance from home that pedestrian incidents occur? 
	 What is the typical distance from home that pedestrian incidents occur? 

	 How often are people in the tract in which they reside or a neighboring tract? 
	 How often are people in the tract in which they reside or a neighboring tract? 


	 How does the race, ethnicity and income composition of their home tract compare with race, ethnicity and income composition of the incident tract? 
	 How does the race, ethnicity and income composition of their home tract compare with race, ethnicity and income composition of the incident tract? 
	 How does the race, ethnicity and income composition of their home tract compare with race, ethnicity and income composition of the incident tract? 


	In summary, based on pedestrian incidents reported to OR-EMSIS database, half of all pedestrians are struck within 1.06 miles of their home which is within the distance measures reported in the literature.  The tracts level analysis shows that 38% of pedestrians are struck within their home Census tract while another 22% are struck in the neighboring Census tract.  Using the REII index values, this chapter highlighted that for pedestrians struck in high poverty tracts with high concentrations of BIPOC, 70% 
	8.0 URBAN CENSUS TRACT STATISTICAL ANALYSIS 
	8.0 URBAN CENSUS TRACT STATISTICAL ANALYSIS 
	 

	This section develops statistical models to better understand the association of sociodemographic, built environment, and traffic exposure factors with pedestrian injury counts at the Census tract level in Oregon.  The analytic approach featured in this chapter uses Census tracts as the unit of analysis and measures various built environment and traffic exposure measures as independent variables in a statistical model where pedestrian injuries are the response variable.  Both rural and urban models were con
	Key findings in this chapter include: 
	 Median income of the Census tract is negatively associated with pedestrian injuries, meaning that the lower the tract’s income the higher the number of pedestrian injuries.  These results are consistent with findings from Mansfield et al. (2018), Dai and Jaworski (2016), DiMaggio (2015), Jermprapai and Srinivasan (2014), and Cottrill and Thakuriah (2010). 
	 Median income of the Census tract is negatively associated with pedestrian injuries, meaning that the lower the tract’s income the higher the number of pedestrian injuries.  These results are consistent with findings from Mansfield et al. (2018), Dai and Jaworski (2016), DiMaggio (2015), Jermprapai and Srinivasan (2014), and Cottrill and Thakuriah (2010). 
	 Median income of the Census tract is negatively associated with pedestrian injuries, meaning that the lower the tract’s income the higher the number of pedestrian injuries.  These results are consistent with findings from Mansfield et al. (2018), Dai and Jaworski (2016), DiMaggio (2015), Jermprapai and Srinivasan (2014), and Cottrill and Thakuriah (2010). 

	 Percent of the tract population that is BIPOC is positively associated with pedestrian injuries, meaning that the higher the percentage of the population that is BIPOC the higher the number of pedestrian injuries.  These results are consistent with findings with findings from Apardian and Smirnov 2020, Lin et al 2019, Guerra et al. (2019), Mansfield et al. (2018), Chimba et al. (2014), Abdel-Aty et al(2013), and Loukaitou-Sideris et al (2007).  
	 Percent of the tract population that is BIPOC is positively associated with pedestrian injuries, meaning that the higher the percentage of the population that is BIPOC the higher the number of pedestrian injuries.  These results are consistent with findings with findings from Apardian and Smirnov 2020, Lin et al 2019, Guerra et al. (2019), Mansfield et al. (2018), Chimba et al. (2014), Abdel-Aty et al(2013), and Loukaitou-Sideris et al (2007).  

	 When disaggregate measures of race and ethnicity were used, variation in the risk factors were measured with percent Asian exhibiting a bigger positive effect on pedestrian injuries than percent Latinx, albeit with greater range of effect as measured in the confidence intervals.  
	 When disaggregate measures of race and ethnicity were used, variation in the risk factors were measured with percent Asian exhibiting a bigger positive effect on pedestrian injuries than percent Latinx, albeit with greater range of effect as measured in the confidence intervals.  

	 Race and ethnicity were less stable for the fatal and severe models but consistent predictors of pedestrian in total pedestrian injury models.  
	 Race and ethnicity were less stable for the fatal and severe models but consistent predictors of pedestrian in total pedestrian injury models.  

	 Arterial vehicle miles traveled density and miles of roadway with a posted speed limit of 35 mph or greater are correlated with higher pedestrian injuries.  These results are consistent with findings from Abdel -Aty et al (2013), Dumbaugh and Li (2010), Guerra et al. (2019).  
	 Arterial vehicle miles traveled density and miles of roadway with a posted speed limit of 35 mph or greater are correlated with higher pedestrian injuries.  These results are consistent with findings from Abdel -Aty et al (2013), Dumbaugh and Li (2010), Guerra et al. (2019).  


	 The percentage of workers using transit and the number of transit stops are both correlated with an increase in pedestrian injuries. These results are consistent with findings from Chimba et al. (2014), Cottrill and Thakuriah (2010), Lin et al. (2019) and Mansfield et al. (2018). 
	 The percentage of workers using transit and the number of transit stops are both correlated with an increase in pedestrian injuries. These results are consistent with findings from Chimba et al. (2014), Cottrill and Thakuriah (2010), Lin et al. (2019) and Mansfield et al. (2018). 
	 The percentage of workers using transit and the number of transit stops are both correlated with an increase in pedestrian injuries. These results are consistent with findings from Chimba et al. (2014), Cottrill and Thakuriah (2010), Lin et al. (2019) and Mansfield et al. (2018). 

	 Low wage job density is correlated with higher pedestrian injuries but total job density was associated with fewer pedestrian injuries.  These results are consistent with findings from Guerra et al. (2019), Jermprapai and Srinivasan (2014), Loukaitou-Sideris et al (2007) and Wier et al (2009) and Mansfield et al. (2018). 
	 Low wage job density is correlated with higher pedestrian injuries but total job density was associated with fewer pedestrian injuries.  These results are consistent with findings from Guerra et al. (2019), Jermprapai and Srinivasan (2014), Loukaitou-Sideris et al (2007) and Wier et al (2009) and Mansfield et al. (2018). 

	 Alcohol establishment density was found to be positively associated with an increase in pedestrian injury.  These results are consistent with findings from DiMaggio et al. (2016), Nesoff et al. (2018), Nesoff et al. (2018). 
	 Alcohol establishment density was found to be positively associated with an increase in pedestrian injury.  These results are consistent with findings from DiMaggio et al. (2016), Nesoff et al. (2018), Nesoff et al. (2018). 

	 Mixed effects and fixed effects models are evaluated using 10-fold cross validation and show mixed effects specifications have higher predictive accuracy.   
	 Mixed effects and fixed effects models are evaluated using 10-fold cross validation and show mixed effects specifications have higher predictive accuracy.   


	8.1 MODEL SPECIFICATION AND VARIABLE SELECTION 
	Multiple regression model approaches have been used in past research to assess the relationship between pedestrian injury and Census tract characteristics.  This section describes the process used to determine the model forms used in this chapter.  Because the pedestrian injury counts are overdispersed and zero counts are not excessive, this research utilizes a negative binomial model with random effects parameters though tests a fixed-effects form as well.   
	Selection of the appropriate model depends on the nature of the data.  Ordinary least squares (OLS) regression is appropriate when data are normally distributed but most crash data are not-normally distributed and typically reflect a Poisson distribution with overdispersion.  Overdispersion exists when the response variance is larger than the mean.  If overdispersion is not properly accounted for standard errors can be deflated and predictors may appear statistically significant when in fact they are not si
	Selection of the appropriate model depends on the nature of the data.  Ordinary least squares (OLS) regression is appropriate when data are normally distributed but most crash data are not-normally distributed and typically reflect a Poisson distribution with overdispersion.  Overdispersion exists when the response variance is larger than the mean.  If overdispersion is not properly accounted for standard errors can be deflated and predictors may appear statistically significant when in fact they are not si
	Figure 8.1
	Figure 8.1

	 and 
	Figure 8.2
	Figure 8.2

	 in order to visually inspect the distributions of pedestrian injuries.  The charts have two panels, one for tracts classified as rural and the second panel are showing tracts classified as urban.   

	 
	Figure
	Figure 8.1: Pedestrian injury rate period comparison 
	 
	Figure
	Figure 8.2: Pedestrian injury rate period comparison 
	In addition to visual inspection of the pedestrian injury data, the mean and variance as well as the overdispersion parameter are summarized in Table 8.1 below.  The overdispersion parameter is calculated using the method developed by Cameron and Trivedi (1990) where the null hypothesis of equidispersion is tested in a Poisson model against the alternative of overdispersion and/or underdispersion.  Values significantly larger than one are considered overdispersed.  The R function dispersiontest from the AER
	Table 8.1: Pedestrian Injury Variance, Mean and Overdispersion Parameter Measures by Period and Urban/Rural Designation 
	Table
	TBody
	TR
	Span
	Urban/Rural Tracts 
	Urban/Rural Tracts 

	Variance 
	Variance 

	Mean 
	Mean 

	Overdispersion Parameter 
	Overdispersion Parameter 

	Severity 
	Severity 

	Period 
	Period 


	TR
	Span

	TR
	Span
	Urban 
	Urban 

	1.86 
	1.86 

	1.06 
	1.06 

	1.19 
	1.19 

	Fatal & Severe Pedestrian Injury 
	Fatal & Severe Pedestrian Injury 

	2008-2012 
	2008-2012 


	TR
	Span
	3.00 
	3.00 

	1.36 
	1.36 

	1.44 
	1.44 

	2014-2018 
	2014-2018 


	TR
	Span
	2.45 
	2.45 

	1.21 
	1.21 

	1.37 
	1.37 

	Pooled 
	Pooled 


	TR
	Span
	49.60 
	49.60 

	6.03 
	6.03 

	2.96 
	2.96 

	Total Pedestrian Injury 
	Total Pedestrian Injury 

	2008-2012 
	2008-2012 


	TR
	Span
	70.10 
	70.10 

	7.63 
	7.63 

	3.32 
	3.32 

	2014-2018 
	2014-2018 


	TR
	Span
	60.42 
	60.42 

	6.83 
	6.83 

	3.40 
	3.40 

	Pooled 
	Pooled 


	TR
	Span
	Rural 
	Rural 

	0.83 
	0.83 

	0.63 
	0.63 

	1.02* 
	1.02* 

	Fatal & Severe Pedestrian Injury 
	Fatal & Severe Pedestrian Injury 

	2008-2012 
	2008-2012 


	TR
	Span
	0.83 
	0.83 

	0.60 
	0.60 

	1.14* 
	1.14* 

	2014-2018 
	2014-2018 


	TR
	Span
	0.83 
	0.83 

	0.62 
	0.62 

	1.12 
	1.12 

	Pooled 
	Pooled 


	TR
	Span
	5.33 
	5.33 

	1.84 
	1.84 

	1.64 
	1.64 

	Total Pedestrian Injury 
	Total Pedestrian Injury 

	2008-2012 
	2008-2012 


	TR
	Span
	6.39 
	6.39 

	2.01 
	2.01 

	1.91 
	1.91 

	2014-2018 
	2014-2018 


	TR
	Span
	5.86 
	5.86 

	1.93 
	1.93 

	1.85 
	1.85 

	Pooled 
	Pooled 




	 
	Since crashes are rare events another potential issue in crash counts data is an overabundance of zero counts in the data.  Negative binomial regression models underperform when the data features an excessive number of zeroes in which case a zero-inflated negative binomial should be considered.  Dong et al. (2014) suggests that if 65% or more of the data’s observations are represented by zeros, then a zero-inflated model should be used.   
	Table 8.2
	Table 8.2
	Table 8.2

	 below summarizes the number of tracts that experiences zero pedestrian injuries summarized by urban and rural designations as well as by analysis period.  The table shows that no analysis period or urban and rural designation meets the 65% threshold for employing a zero inflated model.  Because of the overdispersion featured in this data and because there is not an overabundance of zeroes in the data, a negative binomial specification will be used in the analysis of these data below.   

	Table 8.2: Count of Tracts with Zero Pedestrian Injuries 
	Table
	TBody
	TR
	Span
	Urban/Rural Designation 
	Urban/Rural Designation 

	Analysis Period 
	Analysis Period 

	Tracts with Zero Counts of Injury 
	Tracts with Zero Counts of Injury 

	Total Tracts 
	Total Tracts 

	% of Tracts with Zero Counts of Injury 
	% of Tracts with Zero Counts of Injury 


	TR
	Span
	Fatal & Severe 
	Fatal & Severe 

	All Injury 
	All Injury 

	Fatal & Severe % 
	Fatal & Severe % 

	All Injury % 
	All Injury % 


	TR
	Span
	Rural 
	Rural 

	2008-2012 
	2008-2012 

	179 
	179 

	101 
	101 

	307 
	307 

	58.3% 
	58.3% 

	32.9% 
	32.9% 


	TR
	Span
	2014-2018 
	2014-2018 

	181 
	181 

	91 
	91 

	307 
	307 

	59.0% 
	59.0% 

	29.6% 
	29.6% 


	TR
	Span
	Urban 
	Urban 

	2008-2012 
	2008-2012 

	236 
	236 

	43 
	43 

	520 
	520 

	45.4% 
	45.4% 

	8.3% 
	8.3% 


	TR
	Span
	2014-2018 
	2014-2018 

	223 
	223 

	35 
	35 

	520 
	520 

	42.9% 
	42.9% 

	6.7% 
	6.7% 




	 
	Many crash analyses using count data assume that the parameters have fixed effects and do not address unobserved heterogeneity across analysis units by incorporating a random-parameter.  In the presence of unobserved heterogeneity, past research suggests using a count model with a random parameter to handle the potential bias in fixed-parameter estimates (e.g. Anastasopoulos and Mannering, 2009; EI-Basyouny and Sayed, 2009; Anastasopoulos et al., 2012).  Without a random parameter, fixed effect parameters m
	(8-1) 
	Where: 
	λt is the expected number of pedestrian injuries in tract t,  
	Xt is a vector of explanatory variables,  
	β is a vector of model parameters, εt is an error term, 
	θg is a random effect for group g. 
	Random-effect parameters will include the urban area and the year for models using multiple years of data.  In order to measure the performance of model results multiple measures will be used including Akaike Information Criterion (AIC), marginal and conditional R2 values, and Root Mean Squared Error (RMSE).  The formula for AIC is presented in Equation 2 below:   𝑨𝑰𝑪=𝟐𝒌−𝟐𝐥𝐧 (𝑳) 
	(8-2) 
	Where:  
	k = number of free parameters in the model, 
	n = sample size, 
	L = maximized value of the likelihood function 
	AIC is a common measure of prediction error and lower values indicate a model with a better fit and penalizes models with more estimated parameters.  AIC measures are not standardized to remove units like more commonly reported coefficient of determination or R2 but are still useful metrics to compare models against one another.  In addition to AIC criteria, model selection will also evaluate marginal and conditional R2 using the formulation suggested by Nakagawa and Schielzeth (2012).  Because the model sp
	The last performance measure used in model assessment includes RMSE which is a common measure deployed in cross validation.  Cross-validation assesses the predictive capability of a statistical model by testing the model on an out-of-sample dataset, comparing the estimated values to the observed.  RMSE is the standard deviation of the prediction errors (observed compared to predicted) and measure how far from the spread out these predictions are compared to the observed values.  For this work RMSE is calcul
	(8-3) 
	These performance measures will be used to determine whether models using different variable specifications are improving or degrading the overall model performance.  Over 500 variables were constructed for this research, so a stepwise variable selection process was chosen as a way to start to narrow down variables to use in selected models.  A forward and backward stepwise algorithm was employed (Venables and Ripley 2002) using AIC as the performance measure selection criteria.  No algorithm exists in the 
	traffic exposure and built environment factors, some of the latter variables were held in models if they mitigated the impact of income, race and ethnicity variables.  Final models were also selected based on parsimony aiming to remove variables that are collinear.  All models were fit using the glmmTMB (Brooks et al. 2017) function, with results presented as incident rate ratios.   
	Incidence Rate ratios (IRR) are used to understand the rate of an outcome (pedestrian injury) of an exposed population given exposure to the variable of interest (e.g. sociodemographic, traffic exposure, built environment) compared to the rate of outcome for the unexposed population. The IRR values can be interpreted using the following guidelines: 
	 IRR = 1 Exposure does not affect pedestrian injury outcomes 
	 IRR = 1 Exposure does not affect pedestrian injury outcomes 
	 IRR = 1 Exposure does not affect pedestrian injury outcomes 

	 IRR > 1 Exposure associated with higher frequency of pedestrian injury 
	 IRR > 1 Exposure associated with higher frequency of pedestrian injury 

	 IRR < 1 Exposure associated with lower frequency of pedestrian injury 
	 IRR < 1 Exposure associated with lower frequency of pedestrian injury 


	In addition to presenting the model results as IRRs this report assist readers in interpreting model coefficients by using marginal effects.  Marginal effects summarizes how changes in a variable of interest, like income or race, affect the response variable, in this case pedestrian injury, while holding other variables at the specific values, typically the mean of the observed data.  This report specifically uses the representative values method (RVM) defining the start and end values based on observed dat
	(8-4) 
	Adjusted risk ratios (ARR) can be derived from the models above by predicting injury outcomes using marginal effects that include specific exposures and comparing to marginal effects without that exposure.  ARR is the ratio of the average predicted risk conditional on all observations being exposed, to the average risk conditional on all observations being unexposed to the covariate (Kleinman and Norton 2009).  This calculation can be formalized as the following: 𝑨𝑹𝑹= 𝟏𝒏∑𝒓𝒊𝒔𝒌𝒊(𝑿𝒊|𝒂𝒔 𝒊𝒇 𝒆𝒙
	(8-5) 
	N is the risk for individual i is the probability that the outcome variable equals one, conditional on the covariate X.  Using measures derived from the RVM and ARR methods can help to summarize the modeling result in more intuitive ways.  Following the presentation of modeling IRR in the modeling results section, marginal effects and subsequent adjusted risk ratios will be presented for select sociodemographic variables to highlight the role these variables play in pedestrian injury outcomes all else being
	8.2 VARIABLE EXPLORATION 
	A primary objective of this research is to understand and isolate the potential role of race and income as factors in predicting pedestrian injury outcomes when taking into account built environment and exposure variables.  The relationship between the factors used in the statistical analysis are visualized below in order to show the strength and direction of correlation between relevant variables using the calculated Pearson correlation coefficient.  Pearson’s correlation is one of the oldest and most comm
	(8-6) 
	8.3 URBAN AREA TRACTS VARIABLE EXPLORATION  
	This section will explore the cross-correlations of each variable used in the modeling section below in order to demonstrate the various interactions between each factor. 
	This section will explore the cross-correlations of each variable used in the modeling section below in order to demonstrate the various interactions between each factor. 
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	 indicates Pearson correlation coefficient values using both the numeric values and color to aid in visualizing the myriad relationships between the pedestrian injury counts and other possible covariates.  The color purple indicates a positive correlation with darker colors indicating stronger positive relationships.  Similarly, the color orange indicates a negative correlation with darker colors indicating a stronger negative relationship.  As mentioned above, two measures of pedestrian injury will be anal

	The figure shows how all pedestrian injuries (Ped_KABC) are correlated with various sociodemographic, built environment, and traffic exposure measures.  The top two rows (Ped_KABC & Ped_KA) in 
	The figure shows how all pedestrian injuries (Ped_KABC) are correlated with various sociodemographic, built environment, and traffic exposure measures.  The top two rows (Ped_KABC & Ped_KA) in 
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	 allow readers to assess the relationship between pedestrian injuries and included variables.   

	 For race and ethnicity variables there is a measured positive correlation with pedestrian injuries though some race categories like percentage of the population in a tract that are Asian (Asian_Prop) is relatively weak.   
	 For race and ethnicity variables there is a measured positive correlation with pedestrian injuries though some race categories like percentage of the population in a tract that are Asian (Asian_Prop) is relatively weak.   
	 For race and ethnicity variables there is a measured positive correlation with pedestrian injuries though some race categories like percentage of the population in a tract that are Asian (Asian_Prop) is relatively weak.   

	 Percentage of households that have people with limited English proficiency (Limited_English_Prop) living in them or disabled persons (Disability_Hh_Prop) are positively correlated pedestrian injuries.   
	 Percentage of households that have people with limited English proficiency (Limited_English_Prop) living in them or disabled persons (Disability_Hh_Prop) are positively correlated pedestrian injuries.   

	 Income is negatively correlated with pedestrian injuries.   
	 Income is negatively correlated with pedestrian injuries.   


	 Motor vehicle exposure variables are almost all positively associated with pedestrian injuries including vehicle miles traveled (VMT) on all arterial (Vmt_All_Arterial) and VMT on major arterials (Vmt_Major_Arterial).  Three of the four speed variables are positively correlated with pedestrian injuries, though the variable representing the miles of non-interstate roadway with posted speed limits of 45 miles per hour (mph) or more is negatively correlated with pedestrian injuries.   
	 Motor vehicle exposure variables are almost all positively associated with pedestrian injuries including vehicle miles traveled (VMT) on all arterial (Vmt_All_Arterial) and VMT on major arterials (Vmt_Major_Arterial).  Three of the four speed variables are positively correlated with pedestrian injuries, though the variable representing the miles of non-interstate roadway with posted speed limits of 45 miles per hour (mph) or more is negatively correlated with pedestrian injuries.   
	 Motor vehicle exposure variables are almost all positively associated with pedestrian injuries including vehicle miles traveled (VMT) on all arterial (Vmt_All_Arterial) and VMT on major arterials (Vmt_Major_Arterial).  Three of the four speed variables are positively correlated with pedestrian injuries, though the variable representing the miles of non-interstate roadway with posted speed limits of 45 miles per hour (mph) or more is negatively correlated with pedestrian injuries.   

	 Pedestrian exposure measures include the number of transit stops in the tract (Mean_Transit_Stops), number of households and percentage of households in a tract with zero vehicles (Vehicle_0 & Vehicle_0_Prop), and percentage of tract workers using walking or transit to get to work (Jtw_Walk_Prop & Jtw_Transit_Prop).  These measures are all positively correlated with pedestrian injuries, and some are very strongly correlated, such as zero vehicle households.   
	 Pedestrian exposure measures include the number of transit stops in the tract (Mean_Transit_Stops), number of households and percentage of households in a tract with zero vehicles (Vehicle_0 & Vehicle_0_Prop), and percentage of tract workers using walking or transit to get to work (Jtw_Walk_Prop & Jtw_Transit_Prop).  These measures are all positively correlated with pedestrian injuries, and some are very strongly correlated, such as zero vehicle households.   

	 Built environment variables including the number of jobs (C000_WAC) and the number of alcohol establishments (Alc_Site_Count) are positively correlated with pedestrian injuries.  Measures of pedestrian infrastructure such as crossings and sidewalks are not available for the whole state but this research does have access to measures of sidewalk quality and completeness on ODOT’s system.  Miles of sidewalk on ODOT’s system that are poor quality (Sidewalk_Poor) and miles of sidewalk on ODOT’s system that hav
	 Built environment variables including the number of jobs (C000_WAC) and the number of alcohol establishments (Alc_Site_Count) are positively correlated with pedestrian injuries.  Measures of pedestrian infrastructure such as crossings and sidewalks are not available for the whole state but this research does have access to measures of sidewalk quality and completeness on ODOT’s system.  Miles of sidewalk on ODOT’s system that are poor quality (Sidewalk_Poor) and miles of sidewalk on ODOT’s system that hav

	 Lastly, the change in year from an older period of data representing 2008-2012 compared to a more contemporary period of data representing 2014-2018 is also positively correlated with pedestrian injuries revealing the overall growth in pedestrian injuries over time.   
	 Lastly, the change in year from an older period of data representing 2008-2012 compared to a more contemporary period of data representing 2014-2018 is also positively correlated with pedestrian injuries revealing the overall growth in pedestrian injuries over time.   
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	 shows the correlation between pedestrian injuries and the sociodemographic, traffic exposure and traffic exposure variables in order to explore the relative associations between injuries and other variables, but also to show the interconnections between the covariates themselves.  For instance the figure reveals that median income and zero vehicle ownership and households with disabled people are all collinear.  Additionally the correlation between median income and some BIPOC populations can be seen, whic

	 
	Figure
	Figure 8.3: Pearson correlation coefficient for urban tracts pooled data  
	8.4 URBAN AREA STATISTICAL ANALSIS 
	This section presents statistical models using data for urban Census tracts with the aim of measuring the relative risk of pedestrian injury of tract level measures of sociodemographic, traffic exposure, and built environment factors.  Three periods of data are examined including an older period (2008 to 2012), a more contemporary period (2014 to 2018), and a pooled data set that puts the older and more contemporary data together into a pooled dataset.  Models were developed for two pedestrian injury catego
	8.4.1 Urban Area Pooled Data Fatal and Severe Injury Models 
	The model results in Figure 8.4 below summarize models estimating fatal and severe pedestrian injuries in urban areas using the pooled data set.  Results are expressed as incident rate ratios (IRRs) which can be interpreted as the percentage increase in injury counts given a one unit change in predictor variable.  Examples are given along with the description of the results below.  A subset of all the models run are shown in 
	The model results in Figure 8.4 below summarize models estimating fatal and severe pedestrian injuries in urban areas using the pooled data set.  Results are expressed as incident rate ratios (IRRs) which can be interpreted as the percentage increase in injury counts given a one unit change in predictor variable.  Examples are given along with the description of the results below.  A subset of all the models run are shown in 
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	, and includes for the mixed effect models and select fixed effects models. Other models tested are included in the appendix.  Models A through K are specified using a mixed model with urban area and year as random parameter.  Model L is a fixed effects model with no random parameter and estimated to understand the importance of using the random parameter specification.   

	8.4.1.1 Results for Sociodemographic Variables  
	IRR results for income, race and ethnicity are generally stable in terms of direction of effect. Based on these models: 
	 For income, the models show an increase of 1.6% to 2.0% in fatal and severe pedestrian injuries for every $1,000 decrease in median income of a tract, all else being equal (IRRs ranging from 0.984 (p < 0.05) to 0.980 (p < 0.05)).   
	 For income, the models show an increase of 1.6% to 2.0% in fatal and severe pedestrian injuries for every $1,000 decrease in median income of a tract, all else being equal (IRRs ranging from 0.984 (p < 0.05) to 0.980 (p < 0.05)).   
	 For income, the models show an increase of 1.6% to 2.0% in fatal and severe pedestrian injuries for every $1,000 decrease in median income of a tract, all else being equal (IRRs ranging from 0.984 (p < 0.05) to 0.980 (p < 0.05)).   

	 The role of race and ethnicity, the models show an increase in pedestrian injury of 91%, 95%, 120% for every percent increase in the tract’s population that is BIPOC (IRRs range from of 1.91 (p < 0.10) to 2.2 (p < 0.05) in the mixed models and 2.7 (p < 0.05) in the fixed effects model).  The relationship between the percentage of the tract that is BIPOC and the expected number of a pedestrian 
	 The role of race and ethnicity, the models show an increase in pedestrian injury of 91%, 95%, 120% for every percent increase in the tract’s population that is BIPOC (IRRs range from of 1.91 (p < 0.10) to 2.2 (p < 0.05) in the mixed models and 2.7 (p < 0.05) in the fixed effects model).  The relationship between the percentage of the tract that is BIPOC and the expected number of a pedestrian 


	injuries in a tract is significant at the 0.05 level in two models and significant at the 0.10 level in two models.   
	injuries in a tract is significant at the 0.05 level in two models and significant at the 0.10 level in two models.   
	injuries in a tract is significant at the 0.05 level in two models and significant at the 0.10 level in two models.   

	 The percentage of the population that is Asian and Latinx in a tract is also correlated to an increase in the number of a pedestrian injuries in a tract.  IRR for percent of the tract that is Asian ranges from 4.9 (p < 0.05) to 5.3 (p < 0.05).  IRR for percent of the tract that is Latinx around 1.9 (p < 0.10) for both models.  The variable for proportion of the tract population that is Black was not significantly correlated with pedestrian injuries in any of the models presented.  Discussion of these outc
	 The percentage of the population that is Asian and Latinx in a tract is also correlated to an increase in the number of a pedestrian injuries in a tract.  IRR for percent of the tract that is Asian ranges from 4.9 (p < 0.05) to 5.3 (p < 0.05).  IRR for percent of the tract that is Latinx around 1.9 (p < 0.10) for both models.  The variable for proportion of the tract population that is Black was not significantly correlated with pedestrian injuries in any of the models presented.  Discussion of these outc

	 The percentage of households with limited English proficient speakers was included in models B and C.  Pedestrian injuries increase as the percentage of the households in the tract that have limited English proficiency increases.  The IRR for this variable ranges from 5.4 (p < 0.05) to 6.3 (p < 0.05).  Lastly, percentage of households in the tract with a disabled person was included in models B, H and I (see appendix) with IRR values of 1.9 (p > 0.10) 2.3 (p < 0.10) and 1.9 (p > 0.10).   
	 The percentage of households with limited English proficient speakers was included in models B and C.  Pedestrian injuries increase as the percentage of the households in the tract that have limited English proficiency increases.  The IRR for this variable ranges from 5.4 (p < 0.05) to 6.3 (p < 0.05).  Lastly, percentage of households in the tract with a disabled person was included in models B, H and I (see appendix) with IRR values of 1.9 (p > 0.10) 2.3 (p < 0.10) and 1.9 (p > 0.10).   


	8.4.1.2 Results for Traffic Exposure Variables 
	Results for traffic exposure variables show that vehicle volume and speed are important contributors to pedestrian crash outcomes.  Based on these models: 
	 An increase in VMT on major arterials is associated with an increase in the number of fatal and severe pedestrian injuries of 8.0% to 9.0% for every 1 million increase in VMT, all else being equal (IRRs of 1.08 to 1.09).  
	 An increase in VMT on major arterials is associated with an increase in the number of fatal and severe pedestrian injuries of 8.0% to 9.0% for every 1 million increase in VMT, all else being equal (IRRs of 1.08 to 1.09).  
	 An increase in VMT on major arterials is associated with an increase in the number of fatal and severe pedestrian injuries of 8.0% to 9.0% for every 1 million increase in VMT, all else being equal (IRRs of 1.08 to 1.09).  

	 Miles of non-interstate 45-plus mph roadways in a tract decrease the pedestrian injuries in urban tracts which is not an expected outcome with IRRs from of 0.23 (p < 0.05) to 0.311 (p < 0.05).  Discussion of the possible reasons for this measured impact are featured below but might be because these facilities are in less populated parts of urban areas where less pedestrian activity is occurring.   
	 Miles of non-interstate 45-plus mph roadways in a tract decrease the pedestrian injuries in urban tracts which is not an expected outcome with IRRs from of 0.23 (p < 0.05) to 0.311 (p < 0.05).  Discussion of the possible reasons for this measured impact are featured below but might be because these facilities are in less populated parts of urban areas where less pedestrian activity is occurring.   

	 Miles of non-interstate roads with 35-plus roadway was shown to increase the pedestrian injuries with IRRs ranging from 3.8 (p < 0.05) to 4.1 (p < 0.05).   
	 Miles of non-interstate roads with 35-plus roadway was shown to increase the pedestrian injuries with IRRs ranging from 3.8 (p < 0.05) to 4.1 (p < 0.05).   

	 An increase in the average width of arterials was shown to increase the number of pedestrian fatal and severe injuries, though this variable was only significant at the 0.10 level, indicating some uncertainty about the effect.  This variable is difficult to properly operationalize at the zonal level which might be why the greater uncertainty for this variable exists.  
	 An increase in the average width of arterials was shown to increase the number of pedestrian fatal and severe injuries, though this variable was only significant at the 0.10 level, indicating some uncertainty about the effect.  This variable is difficult to properly operationalize at the zonal level which might be why the greater uncertainty for this variable exists.  


	Pedestrian traffic exposure cannot be measured directly because a systematic accounting of pedestrian traffic does not exist as it does for vehicle traffic; therefore, this research relies on measures that are available.   
	 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian activity and was associated with 3% to 5% increase in pedestrian fatal and severe injuries for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.03 (p < 0.05) to 1.05 (p < 0.05)).   
	 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian activity and was associated with 3% to 5% increase in pedestrian fatal and severe injuries for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.03 (p < 0.05) to 1.05 (p < 0.05)).   
	 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian activity and was associated with 3% to 5% increase in pedestrian fatal and severe injuries for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.03 (p < 0.05) to 1.05 (p < 0.05)).   

	 The percentage of the tract’s workers that commute by walking is significantly correlated to pedestrian injuries but the direction is unexpected revealing a decrease in pedestrian fatal and severe injury.   
	 The percentage of the tract’s workers that commute by walking is significantly correlated to pedestrian injuries but the direction is unexpected revealing a decrease in pedestrian fatal and severe injury.   

	 The percentage of workers that take transit to work is associated with an increase in the number of expected pedestrian injuries by a factor of 9.6 to 17.8 times for every percent increase the proportion of workers that use transit to get to work (IRRs ranging from 10.6 (p < 0.05) to 18.8 (p < 0.05)).   
	 The percentage of workers that take transit to work is associated with an increase in the number of expected pedestrian injuries by a factor of 9.6 to 17.8 times for every percent increase the proportion of workers that use transit to get to work (IRRs ranging from 10.6 (p < 0.05) to 18.8 (p < 0.05)).   

	 The relationship between pedestrian injury and transit can also be observed with the IRR for transit stop count variable, showing an increase of 10 transit stops in a tract increases the frequency of a pedestrian injuries by 0.7% to 0.8% (very stable IRRs ranging from 1.006 (p < 0.05) to 1.008 (p < 0.05)).   
	 The relationship between pedestrian injury and transit can also be observed with the IRR for transit stop count variable, showing an increase of 10 transit stops in a tract increases the frequency of a pedestrian injuries by 0.7% to 0.8% (very stable IRRs ranging from 1.006 (p < 0.05) to 1.008 (p < 0.05)).   

	 The last measure of pedestrian exposure are the percentage of households with zero vehicles.  It is assumed that households that do not own vehicles are more likely to walk to meet daily needs and therefore tracts with more zero vehicle households will have more people walking and more pedestrian activity.  The model results presented in Figure 8.4 show that the percentage of all households with zero vehicles is not significant at the 0.05 or 0.10 levels, though was positively correlated to pedestrian inj
	 The last measure of pedestrian exposure are the percentage of households with zero vehicles.  It is assumed that households that do not own vehicles are more likely to walk to meet daily needs and therefore tracts with more zero vehicle households will have more people walking and more pedestrian activity.  The model results presented in Figure 8.4 show that the percentage of all households with zero vehicles is not significant at the 0.05 or 0.10 levels, though was positively correlated to pedestrian inj


	8.4.1.3 Results for Built Environment 
	Statewide data on pedestrian specific infrastructure such as sidewalks and crossing does not exists nor does a comprehensive database of other important features like streetlight locations.  However, ODOT data on the location and quality of sidewalks on ODOT owned facilities, as well as statewide data on employment and the location of businesses that sell alcohol was utilized.  These variables are considered built environment variables though some of the effects detected could be proxy measures for pedestri
	 The number of miles of sidewalk rated poor was not significantly associated with pedestrian injury outcome but the number of miles of sidewalk rated substandard 
	 The number of miles of sidewalk rated poor was not significantly associated with pedestrian injury outcome but the number of miles of sidewalk rated substandard 
	 The number of miles of sidewalk rated poor was not significantly associated with pedestrian injury outcome but the number of miles of sidewalk rated substandard 


	were associated with a 3.1% and 3.5% (IRR 1.03 and 1.034, p < 0.05) increase in pedestrian fatal and severe injuries in that tract.   
	were associated with a 3.1% and 3.5% (IRR 1.03 and 1.034, p < 0.05) increase in pedestrian fatal and severe injuries in that tract.   
	were associated with a 3.1% and 3.5% (IRR 1.03 and 1.034, p < 0.05) increase in pedestrian fatal and severe injuries in that tract.   

	 Intersection density was also included as a control variable but was not significant at the 0.05 level so the actual effect is uncertain.   
	 Intersection density was also included as a control variable but was not significant at the 0.05 level so the actual effect is uncertain.   

	 Similarly, the measure of low wage jobs was helpful for a control variable but was not statistically significant at the 0.05 level for the fatal and severe injury models.   
	 Similarly, the measure of low wage jobs was helpful for a control variable but was not statistically significant at the 0.05 level for the fatal and severe injury models.   

	 Total jobs per square mile was associated with fewer pedestrian injuries all else being equal with IRRs around 0.96 (p < 0.05).   
	 Total jobs per square mile was associated with fewer pedestrian injuries all else being equal with IRRs around 0.96 (p < 0.05).   

	 Lastly, the number of alcohol establishments per square mile was associated with an increase in pedestrian injuries with IRRs stable across all models.  For every 10 alcohol establishments per square miles fatal and severe pedestrian injuries increase by 1% all else being equal.   
	 Lastly, the number of alcohol establishments per square mile was associated with an increase in pedestrian injuries with IRRs stable across all models.  For every 10 alcohol establishments per square miles fatal and severe pedestrian injuries increase by 1% all else being equal.   


	 
	 
	Figure
	Figure 8.4: Urban area pooled data fatal and severe injury models results 
	8.4.1.4 Urban Area and Year Random Effects for Fatal and Severe Injury Models 
	Models A through J shown in Figure 8.4 (and A-1 appendix) use mixed model specification meaning they include a random parameter for the urban area and year to control for unobserved heterogeneity, or unmeasured differences, measured by these terms and not directly accounted for in the fixed effect terms.  For the urban area random parameter the effect is likely measuring differences for specific urban areas that are not observed in the available covariates.  These can be thought of as a measure of how much 
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	 shows the conditional modes for each urban area with negative values indicating less fatal and severe pedestrian injuries compared to the state average and controlling for all the fixed effects.  Eugene, Klamath Falls-Altamount, Medford, and The Dalles have relatively large negative conditional mode values compared to the statewide average.  This can be interpreted as some unmeasured direct effect in those urban areas that reduce pedestrian injuries such as less pedestrian activity, safety in numbers (so p

	 
	Figure
	Figure 8.5: Conditional modes for urban area random effects (Model D and G)  
	8.4.1.5 Cross Validation Results and Model Performance Measures 
	In this section model results are compared based on cross-validation results and other model performance measures including AIC and marginal and conditional R2.  All models presented in 
	In this section model results are compared based on cross-validation results and other model performance measures including AIC and marginal and conditional R2.  All models presented in 
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	 perform similarly though some differences emerge.  Larger differences exist between the mixed models and the fixed effects models which is explored in this section.  The models constructed and presented in 
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	 include AIC, marginal and conditional R2 values to help understand how different specifications improve the quality of the model overall.  In addition to these measures is the R2 and RMSE based on 10-fold cross validation.  These results highlight the models with the best predictive capability by partitioning the data into 10 groups and using 90% of the data to estimate a model and then to compare with the remaining 10% of data and assessing how well each model does at predicting fatal and severe pedestria

	showing cross validation results for both fixed and mixed effects models is to highlight the importance of the mixed effects approach especially as it relates to predictive accuracy of the different models.  
	showing cross validation results for both fixed and mixed effects models is to highlight the importance of the mixed effects approach especially as it relates to predictive accuracy of the different models.  
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	 shows how RMSE is lower for all models when specifying a mixed effects model demonstrating the importance of this type of specification in terms of prediction.   

	Table 8.3: Cross Validation Results for Urban Tracts Pooled Data Models 
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	Based on the performance measures in this table the best model for predictive accuracy is Model G and followed closely by models B and C.  Due to the random splitting of training and testing data in the cross-validation process, it is expected these performance values have some perturbation so cross-validation results that are close are probably not meaningfully different.  In tests for models with BIPOC race variable Model G appears to be preferred with the highest R2 values and one of the lowest RMSE valu
	8.4.1.6 Marginal Effects Tests for Select Urban Tracts Pooled Data Model 
	Marginal effects tests are partial derivatives of statistical models estimated above and allow for simpler interpretation of model outputs by holding all variables in the model constant at the observed mean while varying the covariate(s) of interest in order to see how the response variable changes.  This is done below in this section for race, ethnicity and income variables to show the relative impact of changes in these variables based on observed ranges of those variables in Oregon.  Marginal effects tes
	Using the selected Model D based on cross validation results but also Model G as the BIPOC variable was significant at the 0.05 level, marginal effects and adjusted relative risk are presented in 
	Using the selected Model D based on cross validation results but also Model G as the BIPOC variable was significant at the 0.05 level, marginal effects and adjusted relative risk are presented in 
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	.  All covariates are held at the mean values based on the observed data while the median income is varied according to the range of observed values.  The marginal effects (top panel) show how many fatal and severe pedestrian injuries are expected in a tract based on the median income of the tract all else being equal.  
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	 shows that adjusted relative risk decreases by about 50% if the tract exhibits the state median income (~$60,000) and declines by nearly 94% in the highest income tracts.  In fact, in the seven urban tracts (~37,000 people) in Oregon where the median income is greater than $150,000 there was only one severe injury in 10 years while in tracts with less than $25,000 (~124,000 people) there were 50 fatal and severe injuries during the same time period.  There does not seem to be a significant difference betwe

	 
	Figure
	Figure 8.6: Marginal effects and adjusted relative risk for median income (Urban tracts using Model D & G)  
	The next set of marginal effects and adjusted relative risk results are presented in 
	The next set of marginal effects and adjusted relative risk results are presented in 
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	.  This figure shows how the percentage of the tract’s population that is BIPOC effects pedestrian injury outcomes.  The IRR in models D and G were 1.91 and 1.95 respectively though the variables were not significant at the 0.05 level meaning the level of precision for the effect is much larger.  This lack of precision can be seen in 
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	 the lower and upper limits of the marginal effects and adjusted relative risk are much wider than compared to the results presented in the median income.  Though the precision of the estimate is lower, the effect of BIPOC variable can be observed where adjusted relative risk increases by about 15% in tracts with the state average percent of tract population that is BIPOC (22%) with tracts in the upper range of BIPOC % exhibiting up to 45% to 55% more risk than tracts with no BIPOC communities, all else bei
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	Figure 8.7: Marginal effects and adjusted relative risk for percentage of tract’s population that is BIPOC (Urban tracts using Model D & G)  
	The next set of marginal effects and adjusted relative risk measures are presented in 
	The next set of marginal effects and adjusted relative risk measures are presented in 
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	 include the estimated effect of the percentage of the population that is Asian 

	and Latinx based on Model F results. The estimated IRRs for percentage Asian and percentage Latinx from Model F are 5.3 (p < 0.05) and 1.9 (p < 0.10) respectively.  Because the variables for percentage Black was not significant at the 0.05 level, this parameter is not included.  The parameter estimates for percentage Latino are less certain because the estimate is just over the 0.05 p-value threshold which can be observed in the confidence intervals which have considerable spread.  That said, the increase i
	 
	Figure
	Figure 8.8: Marginal effects and adjusted relative risk for percentage of tract’s population that is Asian and Latinx (Urban tracts using Model F)  
	8.4.1.7 Fatal and Severe Pedestrian Injury Models Discussion 
	The section above details the results of various statistical models attempting to understand the effects of sociodemographic, traffic exposure, and built environmental factors on fatal and severe pedestrian injury outcomes at the tract level using an ecological analysis approach.  Even after controlling for traffic exposure and built environmental factors from available data, income and race measures are positively correlated with pedestrian injuries.  Income is a very stable measure varying minimally in th
	of small numbers issues since the total number of Black people in Oregon is very small, just around 70,000 people (ACS 2014 – 2018 sample) which is just 2.6% of the urban population in Oregon.  Based on cross validation results the mixed models appear to outperform the fixed effects models.   
	8.4.2 Urban Area Pooled Data All Injury Models 
	While Section 7.4.2 focuses on severe and fatal injuries, this section provides a comparable analysis but for all pedestrian injuries (which includes fatal and severe injuries). The model results featured in 
	While Section 7.4.2 focuses on severe and fatal injuries, this section provides a comparable analysis but for all pedestrian injuries (which includes fatal and severe injuries). The model results featured in 
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	Figure 8.10
	 summarize models estimating total pedestrian injuries (all severities) in urban areas using the pooled data set.  Results in the figure are expressed as incident rate ratios (IRRs) which can be interpreted as the percentage increase in injury counts given a one unit change in predictor variable.  Examples will be given along with the description of the results below.  
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	 shows a subset of models with the appendix featuring other models that were tested.  The below figure includes results for the mixed and select fixed effects models.  Models A through I are specified using a mixed model with urban area and year as random parameter.  Model K are fixed effects models with no random parameter and estimated to understand the importance of using the random parameter specification. 

	8.4.2.1 Results for Socioeconomic Variables  
	IRR results for income, race and ethnicity are generally stable in terms of direction of effect. 
	 For income, the models show an increase of 1.5% to 1.2% in total pedestrian injury for every $1,000 decrease in median income of a tract all else being equal (IRRs ranging from 0.985 (p < 0.05) to 0.988 (p < 0.05)).   
	 For income, the models show an increase of 1.5% to 1.2% in total pedestrian injury for every $1,000 decrease in median income of a tract all else being equal (IRRs ranging from 0.985 (p < 0.05) to 0.988 (p < 0.05)).   
	 For income, the models show an increase of 1.5% to 1.2% in total pedestrian injury for every $1,000 decrease in median income of a tract all else being equal (IRRs ranging from 0.985 (p < 0.05) to 0.988 (p < 0.05)).   

	 The role of race and ethnicity variables varies by model with an increase in pedestrian injury of 70%, 100%, 100%, respectively, for every percent increase in the tracts population that is BIPOC the percentage of the tract that is BIPOC (significant at the 0.05 level all the models tested, with IRRs of 1.7 (p < 0.05) to 2.0 (p < 0.05) in the mixed models and 2.0 (p < 0.05) in the fixed effects). 
	 The role of race and ethnicity variables varies by model with an increase in pedestrian injury of 70%, 100%, 100%, respectively, for every percent increase in the tracts population that is BIPOC the percentage of the tract that is BIPOC (significant at the 0.05 level all the models tested, with IRRs of 1.7 (p < 0.05) to 2.0 (p < 0.05) in the mixed models and 2.0 (p < 0.05) in the fixed effects). 

	 The percentage of the population that is Asian and Latinx in a tract is also correlated to an increase in the number of a pedestrian injuries in a tract.  IRR for percent of the tract that is Asian ranges from 2.9 (p < 0.05) to 3.5 (p < 0.05).  IRR for percent of the tract that is Latinx ranges from 2.0 (p < 0.05) to 2.1 (p < 0.05).  The variable for proportion of the tract population that is Black was not significantly correlated with pedestrian injuries in any of the models presented.  Discussion of thi
	 The percentage of the population that is Asian and Latinx in a tract is also correlated to an increase in the number of a pedestrian injuries in a tract.  IRR for percent of the tract that is Asian ranges from 2.9 (p < 0.05) to 3.5 (p < 0.05).  IRR for percent of the tract that is Latinx ranges from 2.0 (p < 0.05) to 2.1 (p < 0.05).  The variable for proportion of the tract population that is Black was not significantly correlated with pedestrian injuries in any of the models presented.  Discussion of thi

	 The percentage of households with limited English proficient speakers correlates to an increase in pedestrian injuries as the percentage of the households in the 
	 The percentage of households with limited English proficient speakers correlates to an increase in pedestrian injuries as the percentage of the households in the 


	tract that have limited English proficiency increases.  The IRR for this variable ranges from 3.2 (p < 0.05) to 3.7 (p < 0.05).   
	tract that have limited English proficiency increases.  The IRR for this variable ranges from 3.2 (p < 0.05) to 3.7 (p < 0.05).   
	tract that have limited English proficiency increases.  The IRR for this variable ranges from 3.2 (p < 0.05) to 3.7 (p < 0.05).   

	 Lastly, percentage of households in the tract with a person with a disability was included in models B and I with IRR values of 2.1 (p > 0.05). 
	 Lastly, percentage of households in the tract with a person with a disability was included in models B and I with IRR values of 2.1 (p > 0.05). 


	8.4.2.2 Results for Traffic Exposure Variables 
	Results for traffic exposure variables show that vehicle volume and speed are important contributors to pedestrian crash outcomes.   
	 VMT on major arterials increase the number of pedestrian injuries.  For every million VMT on major arterials pedestrian injuries increases by 9.0% to 9.7%, all else being equal.   
	 VMT on major arterials increase the number of pedestrian injuries.  For every million VMT on major arterials pedestrian injuries increases by 9.0% to 9.7%, all else being equal.   
	 VMT on major arterials increase the number of pedestrian injuries.  For every million VMT on major arterials pedestrian injuries increases by 9.0% to 9.7%, all else being equal.   

	 Miles of non-interstate 45-plus mph roadways in a tract decrease the pedestrian injuries in urban tracts with IRR range of 0.21 (p < 0.05) to 0.25 (p < 0.05).   
	 Miles of non-interstate 45-plus mph roadways in a tract decrease the pedestrian injuries in urban tracts with IRR range of 0.21 (p < 0.05) to 0.25 (p < 0.05).   

	 Miles of non-interstate roads with 35-plus roadway was shown to increase the pedestrian injuries with a stable IRR of 1.5 (p < 0.05).   
	 Miles of non-interstate roads with 35-plus roadway was shown to increase the pedestrian injuries with a stable IRR of 1.5 (p < 0.05).   

	 An increase in the average width of arterials was shown to increase the number of pedestrian fatal and severe injuries, though this variable was only significant at the 0.10 level in one of the mixed effects model and was also significant in the fixed effect model.   
	 An increase in the average width of arterials was shown to increase the number of pedestrian fatal and severe injuries, though this variable was only significant at the 0.10 level in one of the mixed effects model and was also significant in the fixed effect model.   


	As mentioned previously, pedestrian traffic exposure cannot be measured directly because a systematic accounting of pedestrian traffic does not exist and instead some proxies for pedestrian activity are used.   
	 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian activity and was shown to increase pedestrian injuries by roughly 2% increase for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.017 (p < 0.05) to 1.025 (p < 0.05)).   
	 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian activity and was shown to increase pedestrian injuries by roughly 2% increase for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.017 (p < 0.05) to 1.025 (p < 0.05)).   
	 The miles of sidewalk on the ODOT system was used as a proxy for pedestrian activity and was shown to increase pedestrian injuries by roughly 2% increase for an increase of 1 mile of sidewalk in a tract (IRRs ranging 1.017 (p < 0.05) to 1.025 (p < 0.05)).   

	 The percentage of workers that walk to work is significantly correlated to pedestrian injuries.  The direction of effect shows that this variable is associated with more pedestrian injuries as would be expected but is the opposite of the effect found in the fatal and sever injury models above.  Some discussion of the potential reasons for this is result is offered below.   
	 The percentage of workers that walk to work is significantly correlated to pedestrian injuries.  The direction of effect shows that this variable is associated with more pedestrian injuries as would be expected but is the opposite of the effect found in the fatal and sever injury models above.  Some discussion of the potential reasons for this is result is offered below.   

	 The variable for the percentage of workers that take transit to work is a significant predictor of pedestrian injury with IRRs ranging from 3.4 (p < 0.05) to 7.0 (p < 0.05).   
	 The variable for the percentage of workers that take transit to work is a significant predictor of pedestrian injury with IRRs ranging from 3.4 (p < 0.05) to 7.0 (p < 0.05).   

	 The relationship between pedestrian injury and transit is also measured by using the transit stop count variable with IRRs ranging from 1.008 (p < 0.05) to 1.010 
	 The relationship between pedestrian injury and transit is also measured by using the transit stop count variable with IRRs ranging from 1.008 (p < 0.05) to 1.010 


	(p < 0.05).  These IRRs reveal that an increase of 10 transit stops in a tract increases the frequency of a pedestrian injuries by 0.8% to 1.0%.   
	(p < 0.05).  These IRRs reveal that an increase of 10 transit stops in a tract increases the frequency of a pedestrian injuries by 0.8% to 1.0%.   
	(p < 0.05).  These IRRs reveal that an increase of 10 transit stops in a tract increases the frequency of a pedestrian injuries by 0.8% to 1.0%.   

	 The model results show that the percentage of all households with zero vehicles increases the expected number of pedestrian injuries with IRRs ranging from 2.4 (p < 0.10) to 2.5 (p < 0.10).   
	 The model results show that the percentage of all households with zero vehicles increases the expected number of pedestrian injuries with IRRs ranging from 2.4 (p < 0.10) to 2.5 (p < 0.10).   


	8.4.2.3 Results for Built Environment 
	As mentioned above this research lacks data on some important build environmental variables such as sidewalks, pedestrian crossings, and street lighting for the entire transportation system in Oregon.  However this research has access to measures of sidewalk miles and quality on the ODOT system as well as measures of jobs and alcohol establishment location.  Miles of sidewalk on the ODOT system is associated with an increase in pedestrian crash injury, likely because sidewalks are where pedestrians are usin
	Many variables for jobs were tested in models with the theory that job locations would be proxies for built environments where pedestrians used the system.  
	 Total job density was associated with a decrease in pedestrian injury with IRRs ranging from 0.950 (p < 0.05) to 0.953 (p < 0.05).   
	 Total job density was associated with a decrease in pedestrian injury with IRRs ranging from 0.950 (p < 0.05) to 0.953 (p < 0.05).   
	 Total job density was associated with a decrease in pedestrian injury with IRRs ranging from 0.950 (p < 0.05) to 0.953 (p < 0.05).   

	 The number of low wage workers ($1,250 a month of less) was correlated to an increase in pedestrian injuries with IRRs ranging from 1.29 (p < 0.05) to 1.34 (p < 0.05).  This finding indicates that in addition to home location of low income people, work location should also be considered as a place where pedestrian and vehicle conflicts occur.   
	 The number of low wage workers ($1,250 a month of less) was correlated to an increase in pedestrian injuries with IRRs ranging from 1.29 (p < 0.05) to 1.34 (p < 0.05).  This finding indicates that in addition to home location of low income people, work location should also be considered as a place where pedestrian and vehicle conflicts occur.   


	Lastly, alcohol establishment density is associated with an increase in pedestrian injuries with a stable IRR of 1.001.   
	8.4.2.4 Urban Area and Year Random Effects for All Injury Models 
	As in the fatal and severe injury models, the total pedestrian injury Models A through J shown in 
	As in the fatal and severe injury models, the total pedestrian injury Models A through J shown in 
	Figure 8.8
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	 (and appendix) use mixed model specification, meaning they include a random parameter for the urban area and year to control for unobserved heterogeneity, or unmeasured differences, measured by these terms.  For the urban area random 

	parameter, the effect is likely measuring differences for specific urban areas that are not observed in the available covariates.  These can be thought of as a measure of how much the urban area differs from the ‘average’ urban area in Oregon, considering all the fixed effects in the model (Brooks et al. (2017).  The effect of specific urban areas can provide some information in addition to the fixed effect covariates described above, that could be useful for practioners. This section summarizes the conditi
	Figure 8.8
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	 shows the conditional modes for each urban area with negative values indicating fewer total injuries compared to the state average and controlling for all the fixed effects.  Eugene, Corvallis, La Grande, Klamath Falls-Altamont, and Newberg have relatively large negative conditional mode values compared to the statewide average.  This can be interpreted as some unmeasured direct effect of those urban areas that is reducing pedestrian injuries, such as less pedestrian activity, safety in numbers (so perhaps

	 
	Figure
	Figure 8.9: Urban tracts pooled tract all pedestrian injury models  
	 
	Figure
	Figure 8.10: Urban tracts pooled tract all pedestrian injury models  
	8.4.2.5 Cross Validation Results and Model Selection 
	The models constructed and presented in Figure 8.10 include AIC, marginal and conditional R2 values to help understand how different specifications improve the quality of the model overall.  In addition to these measures is the RMSE based on 10-fold cross-validation.  R2 values are also presented for additional model evaluation measures.  These results highlight the models with the best predictive capability by partitioning the data into 10 groups and using 90% of the data to estimate a model and then to co
	The models constructed and presented in Figure 8.10 include AIC, marginal and conditional R2 values to help understand how different specifications improve the quality of the model overall.  In addition to these measures is the RMSE based on 10-fold cross-validation.  R2 values are also presented for additional model evaluation measures.  These results highlight the models with the best predictive capability by partitioning the data into 10 groups and using 90% of the data to estimate a model and then to co
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	 shows how RMSE is lower for all models when specifying a mixed effects model demonstrating the importance of this type of specification in terms of prediction.   

	Table 8.4: Cross Validation Results for Urban Tracts Pooled Data Models 
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	Based on the performance measures in this table Models E and F appear to perform best and these two models also very good performance based on Nagelkerke marginal and conditional R2 of 0.451/0.611 and 0.0458/0.609 respectively.  Model E operationalizes race using an aggregate variable grouping all BIPOC people while Model F uses disaggregate measures including just the proportion of people in a tract that are Asian or Latinx.  Based on model performance and the desire to make inferences for disaggregate rac
	Model B performed reasonably well with RMSE of 13 and a pseudo marginal/conditional R2 of 0.454/0.606 and will also be explored in more detail in the marginal effect and relative risk section below.   
	8.4.2.6 Marginal Effects Tests for Select Urban Tracts Pooled Data Model 
	As explained above, marginal effects tests are partial derivatives of statistical models estimated above and allow for simpler interpretation of model outputs by holding all variables in the model constant at the observed mean while varying the covariate(s) of interest in order to see how the response variable changes.  This is done below for income, race, ethnicity, disability, and English proficiency to show the relative impact of changes in these variables based on observed ranges of those variables in O
	Using the selected Model E and Model F marginal effects and adjusted relative risk are presented in Figure 8.11.  All covariates are held at the mean values based on the observed data while the median income is varied according to the range of observed values.  The marginal effects (top panel) show how total pedestrian injuries are expected in a tract based on the median income of the tract all else being equal.  
	Using the selected Model E and Model F marginal effects and adjusted relative risk are presented in Figure 8.11.  All covariates are held at the mean values based on the observed data while the median income is varied according to the range of observed values.  The marginal effects (top panel) show how total pedestrian injuries are expected in a tract based on the median income of the tract all else being equal.  
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	 shows that adjusted relative risk decreases by about 40% if the tract exhibits the state median income (~$60,000) and declines by nearly 94% in the highest income tracts.  In fact, in the seven urban tracts in Oregon where the median income is greater than $150,000 (~37,000 people) there was only nine pedestrian injuries in 10 years while in tracts with less than $25,000 (~124,000 people) there were 551 fatal and severe injuries during the same time period.  There does not seem to be a significant differen

	 
	Figure
	Figure 8.11: Marginal effects and adjusted relative risk for median income (Urban tracts using Model E & F)  
	The next set of marginal effects and adjusted relative risk results are presented in 
	The next set of marginal effects and adjusted relative risk results are presented in 
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	.  This figure shows how the percentage of the tract’s population that is BIPOC effects pedestrian injury outcomes.  The precision of the percent BIPOC variable is better for the total injury models compared to the fatal and severe model summarized above.  The impact of this variable can be observed in the figure below where adjusted relative risk increases by about 13% in tracts with the state average (22%) percent of tract population that is BIPOC with tracts in the upper range of BIPOC % exhibiting up to

	 
	Figure
	Figure 8.12: Marginal effects and adjusted relative risk for percent of tract population BIPOC (Urban tracts using Model E)  
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	 presents marginal effects and adjusted relative risk is presented using the percent Asian and percent Latinx variables from Model F.  Other races were not modeled because variables representing other measures of race, as quantified by the Census, were not significantly correlated to pedestrian injuries at the Census tract level.  The figure below shows the positive correlation between percent Asian and Latinx by applying the model and calculating the margin effects.  As the proportion increase so does the 

	 
	Figure
	Figure 8.13: Marginal effects and adjusted relative risk for Asian and Latinx variables (Urban tracts using Model F)  
	The marginal effects and adjusted relative risk for the variable that accounts for the percent of the tracts households that have an individual with a disability are presented in 
	The marginal effects and adjusted relative risk for the variable that accounts for the percent of the tracts households that have an individual with a disability are presented in 
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	.  This figure shows how the increase in the proportion of households in a tract that have a disabled person increases the frequency of pedestrian injuries and associated relative risk.   

	 
	Figure
	Figure 8.14: Marginal effects and adjusted relative risk for percentage of tract’s households that have individual with disability (Urban tracts using Model B)  
	8.4.2.7 All Pedestrian Injury Models Discussion 
	The section above details the results of various statistical models attempting to understand the effects of sociodemographic, traffic exposure, and built environmental factors on total pedestrian injury outcomes at the tract level using an ecological analysis approach.  Even after controlling for traffic exposure and built environmental factors from available data, income and race measures are positively correlated with pedestrian injuries.  Total injury models appear more stable and precise than the fatal 
	mentioned above, potentially because of small numbers issues mentioned in the fatal and severe injury discussion above.   
	Exposure to VMT on major arterials is an important factor in predicting where pedestrian injuries occur, as is the miles of non-interstate roadway with posted speed limits of 35 mph or higher.  Though direct measures of pedestrian activity were not available transit measures including the percentage of workers using transit and the number of transit stops were positively associated with more total pedestrian injuries.  Additionally, the number of sidewalk miles (on ODOT’s system) were also positively associ
	8.5 CENSUS TRACT ANALYSIS DISCUSSION 
	This chapter tests several model specifications aiming to find models that aid in the understanding of the association between income, ethnicity, and race at the tract level and pedestrian injury outcomes.  This chapter develops statistical models using pooled data to determine high performing models which are evaluating in detailed cross-validation, marginal effects and adjusted relative risk measures.  This analysis highlights the importance of considering the effects of income at the tract level in under
	The differences in tract level analysis across time periods shows that, over time, disparities based on race may be growing.  This is corroborated by the FARS analysis detailed in Chapter 4 where pedestrian fatal injury rate disparities have grown between similar time periods as those analyzed in the tract level analysis.  In 
	The differences in tract level analysis across time periods shows that, over time, disparities based on race may be growing.  This is corroborated by the FARS analysis detailed in Chapter 4 where pedestrian fatal injury rate disparities have grown between similar time periods as those analyzed in the tract level analysis.  In 
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	 pedestrian injury rates are summarized and show the difference between fatal pedestrian injury BIPOC rates and the Oregon average rates.  BIPOC fatal injury rates were 1.62 deaths per 100,000 people in 2009-2013 compared to the Oregon average of 1.46, a difference of 10 percent.  In the 2014-2018 time period this difference grew to 15% with BIPOC injury rate of 2.85 and the Oregon average of 2.08.   

	Table 8.5: Pedestrian Fatal Injury Rates per 100,000 people 
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	8.6 LIMITATIONS 
	The analysis in this chapter uses an ecological approach where variables measured at the zonal level are used to understand disaggregate outcomes of pedestrian injury.  Many of the zonal measures represent residential information but this doesn’t necessarily mean that the pedestrian crash participants are the people who live in these Census tracts.  However, as demonstrated in Chapter 6 where home and incident location are analyzed to better understand the likelihood of crash participants being struck in th
	Another limitation of this work is the imperfect assignment of crash injury locations to polygons, especially in cases where the crash is on a street that also represents a border of two Census geographies.  Based on the analysis of spatial autocorrelation featured in section 2.3.1, the bias introduced is likely negligible.  The zonal analysis featured here is meant as a starting point for a more disaggregate analysis of the network where roadway segments and intersections take the place of the Census tract
	 
	9.0 FUTURE RESEARCH 
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	Even though this research utilized data from a variety of sources to document existing pedestrian injury disparities based on race and income, only the racial disparities are directly observable using the FARS data.  It would be ideal to have the income of crash participants to better control for income effects that are likely having a bigger effect in pedestrian injury outcomes compared to race.  This data element would be difficult to collect but proxy measures for income could more easily be derived and 
	FARS data does gather race of the crash participant it would be ideal to have this data element for other injury severities too.  By linking with health system data this attribute could be successfully added to agencies’ crash database of record for at least severe injuries.  This would likely require staff collecting those data to understand nuances with racial categorization and adopt a data domain that allows for racial categories that fit people’s self-identified racial identities but are still collapsi
	A key objective of this research was to determine if disparities have changed but it is outside the purview of this research to answer why disparities have changed.  Based on the analysis in this chapter, future research should explore the causes of the growing disparity.  Potential lines of inquiry could include the changing spatial distribution of poverty and whether low income people are increasingly moving to more automobile centric environments where pedestrian injury rates are likely higher.  Another 
	Future research should also explore the role that vehicle design is having on pedestrian injury outcomes.  Between 1988 and 2018 the average weight of personal vehicles has increased by 26% (EPA 2020).  Severity of pedestrian injury is likely higher due to increased weight of vehicles but it’s not clear if this increase is severity is experienced by everyone equally.  Future research could determine if changing vehicle design is exacerbating racial and income disparities.    
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